论文标题

使用数据驱动的畸变建模的无校准定量相成像

Calibration-free quantitative phase imaging using data-driven aberration modeling

论文作者

Chang, Taean, Jo, Youngju, Choi, Gunho, Ryu, Donghun, Min, Hyun-Seok, Park, Yongkeun

论文摘要

我们提出了一种数据驱动的方法,以补偿无校准定量相成像(QPI)中的光学畸变。与需要其他测量值或背景区域以纠正畸变的现有方法不同,我们利用深度学习技术来对成像系统中的像差物理学进行建模。我们通过使用基于U-NET的深神经网络来证明单发畸变校正的场图像的产生,该网络在具有畸变的光场和被畸变校正的场之间学习了翻译。在各种汇合真核细胞的2D和3D QPI测量上证明了我们方法的高保真度,使用背景减法对常规方法进行基准测试。

We present a data-driven approach to compensate for optical aberration in calibration-free quantitative phase imaging (QPI). Unlike existing methods that require additional measurements or a background region to correct aberrations, we exploit deep learning techniques to model the physics of aberration in an imaging system. We demonstrate the generation of a single-shot aberration-corrected field image by using a U-net-based deep neural network that learns a translation between an optical field with aberrations and an aberration-corrected field. The high fidelity of our method is demonstrated on 2D and 3D QPI measurements of various confluent eukaryotic cells, benchmarking against the conventional method using background subtractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源