论文标题
Lepton风味混合参数和JARLSKOG不变的一环重归化组方程的积分解决方案
Integral solutions to the one-loop renormalization-group equations for lepton flavor mixing parameters and the Jarlskog invariant
论文作者
论文摘要
在基础上工作的Yukawa矩阵是对角线并制作$τ$ indominance近似值的基础,我们在分析中得出了对中微质量的单环恢复型群体(RGE)的积分解决方案(RES) Majorana和Dirac中微子的最小超对称延伸。使用这些积分解决方案,我们进行了数值计算,以研究Lepton风味混合参数和Jarlskog不变性的RGE运行,还将这些积分溶液与通过数值求解单环RES获得的确切结果进行了比较。结果表明,这些积分解决方案与确切的结果一致,并且可以很好地描述Lepton风味混合参数的演变和Jarlskog在大多数情况下不变。我们的积分解决方案的一些重要特征和相关风味参数的演化行为也在分析和数值上详细讨论。
Working in the basis where the charged-lepton Yukawa matrix is diagonal and making the $τ$-dominance approximations, we analytically derive integral solutions to the one-loop renormalization-group equations (RGEs) for neutrino masses, flavor mixing angles, CP-violating phases and the Jarlskog invariant under the standard parametrization of the PMNS matrix in the standard model or its minimal supersymmetric extension for both Majorana and Dirac neutrinos. With these integral solutions, we carry out numerical calculations to investigate the RGE running of lepton flavor mixing parameters and the Jarlskog invariant, and also compare these integral solutions with the exact results obtained by numerically solving the one-loop RGEs. It is shown that these integral solutions coincide with the exact results and can well describe the evolution of lepton flavor mixing parameters and the Jarlskog invariant in most cases. Some important features of our integral solutions and the evolution behaviors of relevant flavor parameters are also discussed in detail both analytically and numerically.