论文标题

在线进行反事实:高效且公正的在线评估排名

Taking the Counterfactual Online: Efficient and Unbiased Online Evaluation for Ranking

论文作者

Oosterhuis, Harrie, de Rijke, Maarten

论文摘要

反事实评估可以估计基于历史交互数据的排名系统之间的点击率率(CTR)差异,同时减轻位置偏差和项目选择偏差的影响。我们介绍了新颖的记录 - 策略优化算法(Logopt),该算法优化了记录数据的策略,以使反事实估计值的差异很小。随着最小化差异会导致更快的收敛性,LogOPT增加了反事实估计的数据效率。 logopt将反事实方法(对记录策略无动于衷)转变为一种在线方法,在该方法中,该算法决定显示哪些排名。我们证明,作为一种在线评估方法,Logopt是无偏的W.R.T.与现有的交织方法不同,位置和项目选择偏差。此外,我们通过模拟数千个排名之间的比较来执行大规模实验。我们的结果表明,虽然交错方法会导致系统错误,但logopt虽然在没有偏见的情况下与交织一样有效。

Counterfactual evaluation can estimate Click-Through-Rate (CTR) differences between ranking systems based on historical interaction data, while mitigating the effect of position bias and item-selection bias. We introduce the novel Logging-Policy Optimization Algorithm (LogOpt), which optimizes the policy for logging data so that the counterfactual estimate has minimal variance. As minimizing variance leads to faster convergence, LogOpt increases the data-efficiency of counterfactual estimation. LogOpt turns the counterfactual approach - which is indifferent to the logging policy - into an online approach, where the algorithm decides what rankings to display. We prove that, as an online evaluation method, LogOpt is unbiased w.r.t. position and item-selection bias, unlike existing interleaving methods. Furthermore, we perform large-scale experiments by simulating comparisons between thousands of rankers. Our results show that while interleaving methods make systematic errors, LogOpt is as efficient as interleaving without being biased.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源