论文标题
限制配置路径积分蒙特卡洛
Restricted configuration path integral Monte Carlo
论文作者
论文摘要
量子蒙特卡洛属于量子多粒子系统最准确的模拟技术。然而,对于费米子,这些模拟被禁止在强烈堕落的状态下模拟的符号问题阻碍了这些模拟。随着schoof \ textit {et al。} [t。 schoof \ textit {et al。},贡献。血浆物理。 \ textbf {51},687(2011)],允许为密集的量子等离子体进行第一个\ textit {ab initio}模拟。 CPIMC还存在一个符号问题,当密度降低时,即在与坐标空间中配制的传统QMC互补的参数范围内发生。因此,温暖致密电子气体的CPIMC模拟仅限于Brueckner参数的小值 - 颗粒间距离与BOHR半径的比率 - $ r_S = \ bar {r}/a_b \ a_b \ a_b \ lyssim 1 $。为了与CPIMC达到更强的耦合(较低密度)的状态,在这里我们研究了对蒙特卡洛程序的其他限制。特别是,我们介绍了两个不同版本的“限制CPIMC”,其中省略了某些符号更改蒙特卡洛更新。有趣的是,其中一种方法(RCPIMC)根本没有符号问题,但是它比RCPIMC+仅准确,而RCPIMC+仅忽略了较小的蒙特卡洛步骤。在这里,我们报告了针对铁磁均匀电子气体的广泛模拟,我们研究了RCPIMC和RCPIMC+的特性和准确性。此外,我们在密度温度平面上建立了参数范围,这些模拟既可行又准确。结论是,RCPIMC和RCPIMC+在$θ\ sim 0.1 \ dots 0.5 $的温度下效果最佳,允许达到最高的密度参数,最多可达$ r_s \ sim 3 \ sim 3 \ dots 5 $,从而部分填充了现有的\ textit \ textit {ab ab initio {ab initio {ab initio {ab initio {ab initio} qmc metss。
Quantum Monte Carlo belongs to the most accurate simulation techniques for quantum many-particle systems. However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the regime of strong degeneracy. The situation changed with the development of configuration path integral Monte Carlo (CPIMC) by Schoof \textit{et al.} [T. Schoof \textit{et al.}, Contrib. Plasma Phys. \textbf{51}, 687 (2011)] that allowed for the first \textit{ab initio} simulations for dense quantum plasmas. CPIMC also has a sign problem that occurs when the density is lowered, i.e. in a parameter range that is complementary to traditional QMC formulated in coordinate space. Thus, CPIMC simulations for the warm dense electron gas are limited to small values of the Brueckner parameter -- the ratio of the interparticle distance to the Bohr radius -- $r_s=\bar{r}/a_B \lesssim 1$. In order to reach the regime of stronger coupling (lower density) with CPIMC, here we investigate additional restrictions on the Monte Carlo procedure. In particular, we introduce two different versions of "restricted CPIMC" where certain sign changing Monte Carlo updates are being omitted. Interestingly, one of the methods (RCPIMC) has no sign problem at all, but it is less accurate than RCPIMC+ which neglects only a smaller class of the Monte Carlo steps. Here we report extensive simulations for the ferromagnetic uniform electron gas with which we investigate the properties and accuracy of RCPIMC and RCPIMC+. Further, we establish the parameter range in the density-temperature plane where these simulations are both feasible and accurate. The conclusion is that RCPIMC and RCPIMC+ work best at temperatures in the range of $Θ\sim 0.1\dots 0.5$ allowing to reach density parameters up to $r_s \sim 3\dots 5$, thereby partially filling a gap left open by existing \textit{ab initio} QMC methods.