论文标题
T-BFA:针对目标的flip对抗重量攻击
T-BFA: Targeted Bit-Flip Adversarial Weight Attack
论文作者
论文摘要
传统的深神经网络(DNN)安全性主要与著名的对抗性输入示例攻击有关。最近,对抗性攻击的另一个维度,即对DNN重量参数的攻击非常强大。作为代表性的,基于位基的对抗权重攻击(BFA)将极少量的故障注入重量参数,以劫持执行DNN功能。 BFA的先前作品集中于未定位的攻击,可以通过翻转存储在计算机存储器中的少量重量位来将所有输入分为随机输出类。本文提出了针对目标基于BFA的(T-BFA)对抗权重攻击DNN的第一项工作,该攻击可能会故意误导目标输出类别的选择输入。通过识别通过依赖类的重量位排名算法与目标输出分类高度相关的重量位来实现该目标。我们提出的T-BFA性能在用于图像分类任务的多个DNN体系结构上已成功证明。例如,通过仅在Resnet-18的8800万重量位中翻转27个,我们的T-BFA可能会将“ Hen”类中的所有图像分为Imagenet数据集中的“ Hen”类(即100%攻击成功率),同时保持59.35%的验证准确性。此外,我们在运行DNN计算的真实计算机原型系统中成功证明了我们的T-BFA攻击,并使用IVY桥的Intel I7 CPU和8GB DDR3内存。
Traditional Deep Neural Network (DNN) security is mostly related to the well-known adversarial input example attack. Recently, another dimension of adversarial attack, namely, attack on DNN weight parameters, has been shown to be very powerful. As a representative one, the Bit-Flip-based adversarial weight Attack (BFA) injects an extremely small amount of faults into weight parameters to hijack the executing DNN function. Prior works of BFA focus on un-targeted attack that can hack all inputs into a random output class by flipping a very small number of weight bits stored in computer memory. This paper proposes the first work of targeted BFA based (T-BFA) adversarial weight attack on DNNs, which can intentionally mislead selected inputs to a target output class. The objective is achieved by identifying the weight bits that are highly associated with classification of a targeted output through a class-dependent weight bit ranking algorithm. Our proposed T-BFA performance is successfully demonstrated on multiple DNN architectures for image classification tasks. For example, by merely flipping 27 out of 88 million weight bits of ResNet-18, our T-BFA can misclassify all the images from 'Hen' class into 'Goose' class (i.e., 100 % attack success rate) in ImageNet dataset, while maintaining 59.35 % validation accuracy. Moreover, we successfully demonstrate our T-BFA attack in a real computer prototype system running DNN computation, with Ivy Bridge-based Intel i7 CPU and 8GB DDR3 memory.