论文标题
多路复用网络上非对称$ q $投票模型中连续相变的名副其实的动物学
A veritable zoology of successive phase transitions in the asymmetric $q$-voter model on multiplex networks
论文作者
论文摘要
我们分析了具有随机噪声的非线性$ Q $投票模型,在社会环境中将其解释为双工网络上的独立性。大堂$ Q $(即压力组)的大小是改变系统行为的关键参数。 $ q $ - 投票模型已在以前的工作[Phys。 Rev E.92。052812。(2015)],已经表明,相变的特征取决于多路复用网络中的级别数量以及$ Q $的值。在这里,我们研究了当每个网络级别的大厅大小不同的情况下的相位过渡字符,从而产生两个参数$ q_1 $和$ q_2 $。我们发现,当连续相变之后是连续的一两个连续不连续的阶段时,连续相变的证据,取决于参数。分析该系统时,我们甚至遇到混合阶(或混合)相变。我们执行模拟并在简单的多重情况下获得支持的分析解决方案 - 一个双工集团,该集合由两个完全重叠的完整图(集团)组成。
We analyze a nonlinear $q$-voter model with stochastic noise, interpreted in the social context as independence, on a duplex network. The size of the lobby $q$ (i.e., the pressure group) is a crucial parameter that changes the behavior of the system. The $q$-voter model has been applied on multiplex networks in a previous work [Phys. Rev E. 92. 052812. (2015)], and it has been shown that the character of the phase transition depends on the number of levels in the multiplex network as well as the value of $q$. Here we study phase transition character in the case when on each level of the network the lobby size is different, resulting in two parameters $q_1$ and $q_2$. We find evidence of successive phase transitions when a continuous phase transition is followed by a discontinuous one or two consecutive discontinuous phases appear, depending on the parameter. When analyzing this system, we even encounter mixed-order (or hybrid) phase transition. We perform simulations and obtain supporting analytical solutions on a simple multiplex case - a duplex clique, which consists of two fully overlapped complete graphs (cliques).