论文标题

Curvelane-NAS:统一泳道敏感的架构搜索和自适应点混合

CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending

论文作者

Xu, Hang, Wang, Shaoju, Cai, Xinyue, Zhang, Wei, Liang, Xiaodan, Li, Zhenguo

论文摘要

我们解决了曲线车道检测问题,该问题比常规车道检测更现实的挑战,以更好地促进现代辅助/自主驾驶系统。当前的手工设计的车道检测方法不足以捕获曲线车道,特别是由于缺乏建模远程上下文信息和详细的曲线轨迹,尤其是远程部分。在本文中,我们提出了一个名为Curvelane-NAS的新型车道敏感架构搜索框架,以自动捕获长期相干和准确的短距离曲线信息,同时通过点混合在曲线泳道预测上统一体系结构搜索和后处理。它由三个搜索模块组成:a)特征融合搜索模块,以找到多层层次结构特征的本地和全局上下文的更好融合; b)弹性骨干搜索模块,以探索具有良好语义和延迟的有效特征提取器; c)一个自适应点混合模块,用于搜索多层后处理策略,以结合多尺度的头部预测。统一框架通过NAS和自适应点混合之间的相互指导确保了对车道敏感的预测。此外,我们还引发了一个更具挑战性的基准,名为Curvelanes,以解决最困难的曲线道路。它由带有680k标签的150k图像组成。可以在github.com/xbjxh/curvelanes上下载新数据集(本提交提交的已经匿名化)。新的Curvelanes的实验表明,SOTA车道检测方法的性能降低,而我们的模型仍然可以达到80+%的F1分数。对传统车道基准(例如Culane)进行的广泛实验也证明了我们的Curvelane-Nas的优势,例如在Culane上实现新的SOTA 74.8%F1得分。

We address the curve lane detection problem which poses more realistic challenges than conventional lane detection for better facilitating modern assisted/autonomous driving systems. Current hand-designed lane detection methods are not robust enough to capture the curve lanes especially the remote parts due to the lack of modeling both long-range contextual information and detailed curve trajectory. In this paper, we propose a novel lane-sensitive architecture search framework named CurveLane-NAS to automatically capture both long-ranged coherent and accurate short-range curve information while unifying both architecture search and post-processing on curve lane predictions via point blending. It consists of three search modules: a) a feature fusion search module to find a better fusion of the local and global context for multi-level hierarchy features; b) an elastic backbone search module to explore an efficient feature extractor with good semantics and latency; c) an adaptive point blending module to search a multi-level post-processing refinement strategy to combine multi-scale head prediction. The unified framework ensures lane-sensitive predictions by the mutual guidance between NAS and adaptive point blending. Furthermore, we also steer forward to release a more challenging benchmark named CurveLanes for addressing the most difficult curve lanes. It consists of 150K images with 680K labels.The new dataset can be downloaded at github.com/xbjxh/CurveLanes (already anonymized for this submission). Experiments on the new CurveLanes show that the SOTA lane detection methods suffer substantial performance drop while our model can still reach an 80+% F1-score. Extensive experiments on traditional lane benchmarks such as CULane also demonstrate the superiority of our CurveLane-NAS, e.g. achieving a new SOTA 74.8% F1-score on CULane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源