论文标题
通过规范化缩小复发网络的尺寸
Dimension reduction in recurrent networks by canonicalization
论文作者
论文摘要
许多复发性神经网络机器学习范例可以使用状态空间表示形式制定。本文适用了规范状态空间实现的经典概念,以适应半无限输入,以便它可以用作复发网络设置中的尺寸缩小工具。所谓的输入遗忘属性被确定为关键假设,可以保证具有半融合输入的因果关系和时间流入的输入/输出系统的规范实现的存在和唯一性(直至系统同构)。此外,在我们的设置中实现了来自对称的哈密顿系统理论的最佳减少概念,以构建投入忘记的规范实现,但不一定是规范。这两个过程在线性褪色内存输入/输出系统的框架中进行了详细研究。最后,引入了使用重现内核希尔伯特空间(RKHS)的隐式减少的概念,该概念允许使用线性读数的系统,以实现降低尺寸,而无需实际计算本文第一部分中引入的减少空间。
Many recurrent neural network machine learning paradigms can be formulated using state-space representations. The classical notion of canonical state-space realization is adapted in this paper to accommodate semi-infinite inputs so that it can be used as a dimension reduction tool in the recurrent networks setup. The so-called input forgetting property is identified as the key hypothesis that guarantees the existence and uniqueness (up to system isomorphisms) of canonical realizations for causal and time-invariant input/output systems with semi-infinite inputs. Additionally, the notion of optimal reduction coming from the theory of symmetric Hamiltonian systems is implemented in our setup to construct canonical realizations out of input forgetting but not necessarily canonical ones. These two procedures are studied in detail in the framework of linear fading memory input/output systems. Finally, the notion of implicit reduction using reproducing kernel Hilbert spaces (RKHS) is introduced which allows, for systems with linear readouts, to achieve dimension reduction without the need to actually compute the reduced spaces introduced in the first part of the paper.