论文标题
域分解最小二乘彼得罗夫 - 加勒金(DD-LSPG)非线性模型还原
Domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) nonlinear model reduction
论文作者
论文摘要
提出了一种适用于非线性代数方程的参数化系统的新型域分解最小二乘Petrov-Galerkin(DD-LSPG)模型还原方法(例如,由离散的参数化的部分差异方程式问题引起的)。与以前的工作相反,我们采用了代数非重叠的分解策略,而不是空间分解策略,这促进了对不同空间差异方案的应用。该方法不是为整个状态空间构建低维子空间,而是为特征原始模型的不同子域/组件构建单独的子空间。在离线阶段,该方法为组件的内部和界面构建了低维碱基。在在线阶段,该方法为每个组件构建了LSPG ROM,并在连接它们的“端口”上强大或弱兼容。我们提出了四种不同的方法来构建子域的接口/端口上的减少碱,以及在连接端口之间执行兼容性的几种方法。我们得出DD-LSPG解的后验和先验误差界限。在传热和流体动力学中对非线性基准问题进行的数值结果表明,所提出的方法在准确性和计算成本方面表现良好,基础的不同选择和兼容性约束,产生了不同的性能概况。
A novel domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) model-reduction method applicable to parameterized systems of nonlinear algebraic equations (e.g., arising from discretizing a parameterized partial-differential-equations problem) is proposed. In contrast with previous works, we adopt an algebraically non-overlapping decomposition strategy rather than a spatial-decomposition strategy, which facilitates application to different spatial-discretization schemes. Rather than constructing a low-dimensional subspace for the entire state space in a monolithic fashion, the methodology constructs separate subspaces for the different subdomains/components characterizing the original model. In the offline stage, the method constructs low-dimensional bases for the interior and interface of components. In the online stage, the approach constructs an LSPG ROM for each component and enforces strong or weak compatibility on the 'ports' connecting them. We propose four different ways to construct reduced bases on the interface/ports of subdomains and several ways to enforce compatibility across connecting ports. We derive a posteriori and a priori error bounds for the DD-LSPG solutions. Numerical results performed on nonlinear benchmark problems in heat transfer and fluid dynamics demonstrate that the proposed method performs well in terms of both accuracy and computational cost, with different choices of basis and compatibility constraints yielding different performance profiles.