论文标题

双曲线结的特殊手术

Exceptional surgeries on hyperbolic fibered knots

论文作者

Ni, Yi

论文摘要

令$ k \ subset S^3 $为双曲线纤维结,使$ s^3_ {p/q}(k)$,$ \ frac pq $ - $ k $的手术,是非hyperbolic。我们证明,如果$ k $的单片是正确的,则$ 0 \ le \ frac pq \ le 4g​​(k)$。如果$ s^3_ {p/q}(k)$是一个小的Seifert Fimert L-Space,则无法获得上限$ 4G(k)$。如果$ k $的单片既不是右手,也不是左手,则$ | q | \ le3 $。 作为推论,对于任何给定的正圆环$ t $,如果$ p/q \ ge4g(t)+4 $,则$ p/q $是斜坡的特征。这改善了Ni-Zhang和McCoy的早期范围。我们还证明了某些有限/环状斜率正在表征。更确切地说,$ 14 $的特征是$ t_ {4,3} $,$ 17 $的特征是$ t_ {5,3} $,而$ 4N+1 $的特征是$ t_ {2n+1,2} $,除$ n = 5 $时。到了最近的tange定理,这表明$ t_ {2n+1,2} $是$ s^3 $中唯一的结,而亚历山大多项式则具有$ t^n-t^{n-t^{n-1}+t^{n-1}+t^{n-2}+t^{n-2}+\ text+text {sister forts {sister forts {sistor corter} $。 在附录中,我们证明,如果纤维结的结式浮子同源性的第二个等级为$ 1 $,那么单曲子是右弯曲或左弯曲的。

Let $K\subset S^3$ be a hyperbolic fibered knot such that $S^3_{p/q}(K)$, the $\frac pq$--surgery on $K$, is non-hyperbolic. We prove that if the monodromy of $K$ is right-veering, then $0\le\frac pq\le 4g(K)$. The upper bound $4g(K)$ cannot be attained if $S^3_{p/q}(K)$ is a small Seifert fibered L-space. If the monodromy of $K$ is neither right-veering nor left-veering, then $|q|\le3$. As a corollary, for any given positive torus knot $T$, if $p/q\ge4g(T)+4$, then $p/q$ is a characterizing slope. This improves earlier bounds of Ni--Zhang and McCoy. We also prove that some finite/cyclic slopes are characterizing. More precisely, $14$ is characterizing for $T_{4,3}$, $17$ is characterizing for $T_{5,3}$, and $4n+1$ is characterizing for $T_{2n+1,2}$ except when $n=5$. By a recent theorem of Tange, this shows that $T_{2n+1,2}$ is the only knot in $S^3$ admitting a lens space surgery while the Alexander polynomial has the form $t^n-t^{n-1}+t^{n-2}+\text{lower order terms}$. In the appendix, we prove that if the rank of the second term of the knot Floer homology of a fibered knot is $1$, then the monodromy is either right-veering or left-veering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源