论文标题
锰蛋白的压力系数和活塞缸细胞压力演变的表征
Characterization of the pressure coefficient of manganin and temperature evolution of pressure in piston-cylinder cells
论文作者
论文摘要
我们报告了温度和压力依赖性电阻的测量值,$ r(t,p)$,在$^4 $ he-gas的压力设置中,从室温下降到$^4 $ he($ t_ \ t_ \ textrm {solid} \ textrm {solid} \ sim $ 50 k in 0.8 gpa in 0.8 gpa)的固化温度为0 gpa $ p $,$ pa $ pa,$ pa $ pa。在活塞缸池中还测量了同一锰线压力计,从300 K下降到1.8 K,并在0 GPA到$ \ sim $ 2 GPA之间测量。从这些数据中,我们推断出由等式$ r_p =(1+αp)R_0 $定义的锰蛋白压力系数的温度和压力依赖性,其中$ r_0 $和$ r_p $是在环境压力和有限压力下的锰蛋白的电阻。我们的结果表明,在冷却$α$时,首先会减少,然后以$ \ sim $ 120 K的范围进行广泛的最低限度,并再次增加到较低的温度。此外,我们发现$α$几乎与$ t \ gtrsim $ 60 k至$ p \ sim $ 2 $ 2 gpa相关,但显示出明显的$ p $依赖,$ t \ lyssim $ 60k。使用这种锰敏度计,我们证明了$ p $的总体降低,随着全压范围的活塞缸电池温度的降低,室温和低温($ t = 1.8 $ k),$ΔP$,$ΔP$之间的压力差的大小随着压力的增加而降低。我们还比较了从雄伟的压力(由元素铅的超导过渡温度(PB))确定的低温压力中推断出的压力值。由于这些数据和分析,我们提出了一种实用算法来推断活塞缸细胞中压力的演变。
We report measurements of the temperature- and pressure-dependent resistance, $R(T,p)$, of a manganin manometer in a $^4$He-gas pressure setup from room temperature down to the solidification temperature of $^4$He ($T_\textrm {solid}\sim$ 50 K at 0.8 GPa) for pressures, $p$, between 0 GPa and $\sim$0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell from 300 K down to 1.8 K and for pressures between 0 GPa to $\sim$2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, $α(T,p)$, defined by the equation $R_p = (1+αp) R_0$ where $R_0$ and $R_p$ are the resistance of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling $α$ first decreases, then goes through a broad minimum at $\sim$120 K and increases again towards lower temperatures. In addition, we find that $α$ is almost pressure-independent for $T\gtrsim$60 K up to $p\sim$2 GPa, but shows a pronounced $p$ dependence for $T\lesssim$60K. Using this manganin manometer, we demonstrate that $p$ overall decreases with decreasing temperature in the piston-cylinder cell for the full pressure range and that the size of the pressure difference between room temperature and low temperatures ($T=1.8$ K), $Δp$, decreases with increasing pressure. We also compare the pressure values inferred from the magnanin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis we propose a practical algorithm to infer the evolution of pressure with temperature in a piston-cylinder cell.