论文标题
强烈镜头III的星系质量曲线:二维破碎的幂律模型
Galaxy mass profiles from strong lensing III: The two-dimensional broken power-law model
论文作者
论文摘要
当对强力透镜进行建模时,即在同一源的多个图像的情况下,透镜星系中最广泛使用的参数化是奇异的幂律模型$ρ(r)\ propto r^{ - γ} $。对于非常准确的工作,该模型可能不足以灵活,例如根据多个图像之间的时间延迟测量哈勃常数。在这里,我们得出了更适应性的模型的透镜特性 - 偏转角,剪切和放大倍率,其中投影的质量表面密度被参数化为连续的二维破碎幂律(2DBPL)。该椭圆2DBPL模型的特征是power-law斜率$ t_1 $,$ t_2 $ break半径的任何一侧$θ_\ mathrm {b} $。 2DBPL模型的关键是截短功率定律(TPL)模型的透镜特性的推导,其中表面密度是截断半径$θ_\ Mathrm {t} $的幂定律,而超越了。该TPL模型本身也很有用。我们通过TPL轮廓创建模拟观察结果,其中图像在截断半径之外形成,因此图像覆盖的环中没有质量。然后,我们证明,对于中等椭圆度的镜头,可以准确恢复图像内部轮廓的斜率。这表明,镜头测量图像环中质量谱的斜率的广泛持有的概念对图像内部半径内部的质量分布不敏感,这是不正确的。
When modelling strong gravitational lenses, i.e., where there are multiple images of the same source, the most widely used parameterisation for the mass profile in the lens galaxy is the singular power-law model $ρ(r)\propto r^{-γ}$. This model may be insufficiently flexible for very accurate work, for example measuring the Hubble constant based on time delays between multiple images. Here we derive the lensing properties - deflection angle, shear, and magnification - of a more adaptable model where the projected mass surface density is parameterised as a continuous two-dimensional broken power-law (2DBPL). This elliptical 2DBPL model is characterised by power-law slopes $t_1$, $t_2$ either side of the break radius $θ_\mathrm{B}$. The key to the 2DBPL model is the derivation of the lensing properties of the truncated power law (TPL) model, where the surface density is a power law out to the truncation radius $θ_\mathrm{T}$ and zero beyond. This TPL model is also useful by itself. We create mock observations of lensing by a TPL profile where the images form outside the truncation radius, so there is no mass in the annulus covered by the images. We then show that the slope of the profile interior to the images may be accurately recovered for lenses of moderate ellipticity. This demonstrates that the widely-held notion that lensing measures the slope of the mass profile in the annulus of the images, and is insensitive to the mass distribution at radii interior to the images, is incorrect.