论文标题
利用合成主题不变的脑电图信号零校准BCI
Leveraging Synthetic Subject Invariant EEG Signals for Zero Calibration BCI
论文作者
论文摘要
最近,使用现代的机器学习技术来解码和解释脑信号,在大脑计算机界面(BCI)领域已取得了重大进展。尽管脑电图(EEG)提供了一种与人脑接口的非侵入性方法,但获得的数据通常是严重的主题和会话依赖性的。这使得此类数据无缝地纳入现实世界应用程序中,因为主题和会话数据差异可能会导致长而乏味的校准要求和跨主题概括问题。为了关注稳态的视觉诱发电位(SSVEP)分类系统,我们提出了一种新颖的方法,即在任何受试者,会话或其他环境条件下生成高度现实的合成EEG数据不变。我们的方法名为主题不变的SSVEP生成对抗网络(SIS-GAN),使用单个网络从多个SSVEP类产生合成的EEG数据。此外,通过利用固定重量预训练的主题分类网络,我们确保我们的生成模型对特定于主题的特征保持不可知,从而产生主题不变的数据,这些数据可应用于新的以前看不见的主题。我们广泛的实验评估证明了我们的合成数据的功效,从而导致了卓越的性能,并且使用我们的主题不变的合成EEG信号进行训练时,在零校准分类任务中提高了16个百分点。
Recently, substantial progress has been made in the area of Brain-Computer Interface (BCI) using modern machine learning techniques to decode and interpret brain signals. While Electroencephalography (EEG) has provided a non-invasive method of interfacing with a human brain, the acquired data is often heavily subject and session dependent. This makes seamless incorporation of such data into real-world applications intractable as the subject and session data variance can lead to long and tedious calibration requirements and cross-subject generalisation issues. Focusing on a Steady State Visual Evoked Potential (SSVEP) classification systems, we propose a novel means of generating highly-realistic synthetic EEG data invariant to any subject, session or other environmental conditions. Our approach, entitled the Subject Invariant SSVEP Generative Adversarial Network (SIS-GAN), produces synthetic EEG data from multiple SSVEP classes using a single network. Additionally, by taking advantage of a fixed-weight pre-trained subject classification network, we ensure that our generative model remains agnostic to subject-specific features and thus produces subject-invariant data that can be applied to new previously unseen subjects. Our extensive experimental evaluation demonstrates the efficacy of our synthetic data, leading to superior performance, with improvements of up to 16 percentage points in zero-calibration classification tasks when trained using our subject-invariant synthetic EEG signals.