论文标题
相关晶格电子中的杂质和其他缺陷:弗里德尔振荡和干扰模式
Impurities and other defects in correlated lattice electrons: Friedel oscillations and interference patterns
论文作者
论文摘要
我们研究干扰模式和弗里德尔振荡(FO),这是由于从两个或多个局部杂质的散射以及相互作用的二维晶格系统中扩展不均匀性的散射。 粒子之间的相关性是通过使用基于真实空间动力学均值场理论和同质自我能源近似(HSEA)的近似方法来解释的,其中忽略了自我能源的位点依赖性部分。 我们发现,随着我们在两种杂质之间的相对距离改变时,干扰最大值和最小值会系统地改变。 同时,相互作用的增加不会改变干扰条纹的位置,而只会降低其强度。 与单个杂质病例的比较清楚地显示了由其他多个散射过程引起的FO边缘的复杂模式。 在延伸步骤的情况下,当相互作用增加时,系统会变得更加均匀。 在单个杂质和许多杂质模型中,Mott绝缘阶段中都不存在FO和干扰模式。
We study interference patterns and Friedel oscillations (FO) due to scattering from two or more localized impurities and scattering from extended inhomogeneities in the two-dimensional lattice systems of interacting fermions. Correlations between particles are accounted for by using an approximate method based on the real-space dynamical mean-field theory and a homogeneous self-energy approximation (HSEA), where the site-dependent part of the self-energy is neglected. We find that the interference maxima and minima change systematically as we vary the relative distance between the two impurities. At the same time, the increase of the interaction does not shift the position of interference fringes but only reduces their intensities. A comparison with the single impurity cases clearly shows complex patterns in FO fringes induced by additional multiple scattering processes. In the case of an extended step like potential the system becomes more homogeneous when the interaction increases. FO and interference patterns are not present in the Mott insulating phase in both single and many impurity models.