论文标题
关于半植物*牛顿方法的应用
On the application of the semismooth* Newton method to variational inequalities of the second kind
论文作者
论文摘要
本文以对最近开发的半齿*牛顿方法的简洁描述开始,用于解决一般夹杂物的解决方案。然后将此方法应用于第二种的一类变异不等式。结果,人们获得了一种可实现的算法,该算法表现出局部超线性收敛。此后,我们建议几种全球收敛的杂交算法,其中一种结合了半齿*牛顿方法与所选的分裂算法,用于求解单调变异不等式。他们的效率通过广泛的数值实验记录。
The paper starts with a concise description of the recently developed semismooth* Newton method for the solution of general inclusions. This method is then applied to a class of variational inequalities of the second kind. As a result, one obtains an implementable algorithm exhibiting a local superlinear convergence. Thereafter we suggest several globally convergent hybrid algorithms in which one combines the semismooth* Newton method with selected splitting algorithms for the solution of monotone variational inequalities. Their efficiency is documented by extensive numerical experiments.