论文标题
乐高二世:一项3毫米分子线研究,涵盖银河系盘中最活跃的恒星形成部分之一的100 pc
LEGO II: A 3 mm molecular line study covering 100 pc of one of the most actively star-forming portions within the Milky Way Disc
论文作者
论文摘要
当前(子)MM-Telescopes的当前产生使分子线的发射成为研究外层次系统的物理,运动学和化学特性的主要工具,但是利用这些观察结果需要详细了解对乳白色范围内的发射线的详细理解。在本文中,我们介绍了60 $^{\ prime \ prime} $($ \ sim $ 3pc)在W49大型巨大星形形成区域的大图中对许多3mm频段分子线的分辨率观察($ \ sim $ \ sim $ \ sim $ \ sim $ \ times $ \ times $ \ times $ \ times $ \ times $ \ times $ \ times $ \ times $ \ times $ \ times $ 100pc at 11kpc),作为“ iram-30m”的一部分。我们发现,当估计线排放特性时,必须考虑分子线转变的空间范围或亮度与它们的临界密度相关,强调丰度和光学深度。我们探讨了线发射的总排放效率和排放效率(即每H $ _ {2} $柱密度)如何随着分子氢柱密度和灰尘温度而变化。我们发现,该参数空间没有一个区域,负责所有物种最明亮,最有效地发出气体。例如,我们发现HCN过渡在高柱密度下显示出较高的排放效率($ 10^{22} $ cm $ $^{ - 2} $)和中等温度(35k),例如。 n $ _2 $ h $^+$最有效地散发出较低温度($ 10^{22} $ cm $^{ - 2} $; <20k)。我们确定$ x _ {\ mathrm {co}(1-0)}} \ sim 0.3 \ times 10^{20} \ Mathrm {cm^{ - 2}(kkms^{ - 1})^{ - 1})^{ - 1}}}} $ 30 \ mathrm {m_ \ odot(kkms^{ - 1} pc^2)^{ - 1}}} $,这两者都与通常采用的值有很大差异。总的来说,这些结果表明在解释分子线发射时应谨慎行事。
The current generation of (sub)mm-telescopes has allowed molecular line emission to become a major tool for studying the physical, kinematic, and chemical properties of extragalactic systems, yet exploiting these observations requires a detailed understanding of where emission lines originate within the Milky Way. In this paper, we present 60$^{\prime\prime}$ ($\sim$3pc) resolution observations of many 3mm-band molecular lines across a large map of the W49 massive star-forming region ($\sim$100$\times$100pc at 11kpc), which were taken as part of the "LEGO" IRAM-30m large project. We find that the spatial extent or brightness of the molecular line transitions are not well correlated with their critical densities, highlighting abundance and optical depth must be considered when estimating line emission characteristics. We explore how the total emission and emission efficiency (i.e. line brightness per H$_{2}$ column density) of the line emission vary as a function of molecular hydrogen column density and dust temperature. We find that there is not a single region of this parameter space responsible for the brightest and most efficiently emitting gas for all species. For example, we find that the HCN transition shows high emission efficiency at high column density ($10^{22}$cm$^{-2}$) and moderate temperatures (35K), whilst e.g. N$_2$H$^+$ emits most efficiently towards lower temperatures ($10^{22}$cm$^{-2}$; <20K). We determine $X_{\mathrm{CO} (1-0)} \sim 0.3 \times 10^{20} \mathrm{cm^{-2}(Kkms^{-1})^{-1}}$, and $α_{\mathrm{HCN} (1-0)} \sim 30\mathrm{M_\odot(Kkms^{-1}pc^2)^{-1}}$, which both differ significantly from the commonly adopted values. In all, these results suggest caution should be taken when interpreting molecular line emission.