论文标题

基塔夫蜂窝晶格模型中的涡流,曲折和手性量规场之间的等效性

Equivalence between vortices, twists and chiral gauge fields in Kitaev's honeycomb lattice model

论文作者

Horner, Matthew D., Farjami, Ashk, Pachos, Jiannis K.

论文摘要

我们证明了$ \ mathbb {z} _2 $量规变换和基塔夫蜂窝晶格模型中的晶格变形在模型的连续限制中可以在手性仪表字段中具有相同的描述。手性量规场与Majorana Fermions耦合,以满足模型非亚伯式部门中的Dirac分散关系。对于特定值,有效的手性仪表场变得等同于$ \ MATHBB {z} _2 $量规场,使我们能够将有效的磁通量与晶格变形相关联。在这种等价的驱动下,我们考虑了与Majorana的$π$涡流和主要的晶格曲折的曲折,并证明它们与彼此彼此相连。这种等效性开启了针对主要的缺陷的新颖编码的可能性,这些缺陷在实验中可能更容易实现。

We demonstrate that $\mathbb{Z}_2$ gauge transformations and lattice deformations in Kitaev's honeycomb lattice model can have the same description in the continuum limit of the model in terms of chiral gauge fields. The chiral gauge fields are coupled to the Majorana fermions that satisfy the Dirac dispersion relation in the non-Abelian sector of the model. For particular values, the effective chiral gauge field becomes equivalent to the $\mathbb{Z}_2$ gauge field, enabling us to associate effective fluxes to lattice deformations. Motivated by this equivalence, we consider Majorana-bounding $π$ vortices and Majorana-bounding lattice twists and demonstrate that they are adiabatically connected to each other. This equivalence opens the possibility for novel encoding of Majorana-bounding defects that might be easier to realise in experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源