论文标题
使用基于保证金的分类方法学习中概括错误的大规模分析
Large scale analysis of generalization error in learning using margin based classification methods
论文作者
论文摘要
大利润分类器是分类的流行方法。我们得出了一个大规模分类器家族的概括误差的渐近表达式,其限制为样本量$ n $和dimension $ p $ to $ \ infty $,固定比率$α= n/p $。该家族涵盖了广泛使用的分类器,包括支持向量机,距离加权歧视和惩罚逻辑回归。我们的结果可用于建立两个类别可分离性的相变边界。我们假设数据是从具有任意协方差结构的单个多元高斯分布生成的。我们探索了协方差矩阵的两种特殊选择:尖峰种群模型和两个具有随机第一层权重的层神经网络。我们用于得出封闭形式表达的方法来自称为复制方法的统计物理学。当$ n,p $达到数百个订单时,我们的渐近结果已经匹配模拟。对于两个层神经网络,我们为多种分类模型重现了最近开发的“双重下降”现象学。我们还讨论了一些可以从这些分析中得出的统计见解。
Large-margin classifiers are popular methods for classification. We derive the asymptotic expression for the generalization error of a family of large-margin classifiers in the limit of both sample size $n$ and dimension $p$ going to $\infty$ with fixed ratio $α=n/p$. This family covers a broad range of commonly used classifiers including support vector machine, distance weighted discrimination, and penalized logistic regression. Our result can be used to establish the phase transition boundary for the separability of two classes. We assume that the data are generated from a single multivariate Gaussian distribution with arbitrary covariance structure. We explore two special choices for the covariance matrix: spiked population model and two layer neural networks with random first layer weights. The method we used for deriving the closed-form expression is from statistical physics known as the replica method. Our asymptotic results match simulations already when $n,p$ are of the order of a few hundreds. For two layer neural networks, we reproduce the recently developed `double descent' phenomenology for several classification models. We also discuss some statistical insights that can be drawn from these analysis.