论文标题

BPS解释了III:血浆中BBGKY层次结构的领先顺序行为

BPS Explained III: The Leading Order Behavior of the BBGKY Hierarchy in a Plasma

论文作者

Singleton Jr, Robert L

论文摘要

这是Brown,Preston和Singleton(BPS)采用的有关维度延续技术的一系列讲座中的第三次,用于计算血浆中的库仑能量汇率。此类过程的两个重要例子是带电的粒子停止功率和不同等离子体物种之间的温度平衡率。第一个讲座致力于理解维数延续的机制,第二个讲座集中在计算电子温度平衡速率以极端量子极限下计算。在本讲座中,我将研究BPS理论的主要理论基础之一,即BBGKY层次结构的尺寸降低。我将证明,要在等离子耦合$ g $中领先订单,bbgky层次结构将降低到三个尺寸,比三个尺寸大,而LBE的尺寸小于三。我们最终必须返回三个维度,而BPS形式主义表明,与BE和LBE相关的简单极点完全取消,从而在三维有限的情况下将限制限制。此外,当分析尺寸从少于三个到三个以上时,LBE的领先顺序行为将成为临近领先的顺序。这提供了$ g $的领先和临时订单项,这相当于对所谓的库仑对数的精确计算,而无需使用积分截止。通过这种方式,BPS将所有库仑互动都考虑到了$ g $的领先和临时订单。

This is the third in a series of lectures on the technique of dimensional continuation, employed by Brown, Preston and Singleton (BPS), for calculating Coulomb energy exchange rates in a plasma. Two important examples of such processes are the charged particle stopping power and the temperature equilibration rate between different plasma species. The first lecture was devoted to understanding the machinery of dimensional continuation, and the second concentrated on calculating the electron-ion temperature equilibration rate in the extreme quantum limit. In this lecture, I will examine one of the main theoretical underpinnings of the BPS theory, namely, the dimensional reduction of the BBGKY hierarchy. I will prove that to leading order in the plasma coupling $g$, the BBGKY hierarchy reduces to the BE for dimensions greater then three and to the LBE for dimensions less than three. We must eventually return to three dimensions, and the BPS formalism shows that the simple poles associated with the BE and the LBE exactly cancel, rendering the limit in three dimensions finite. Furthermore, the leading order behavior of the LBE becomes next-to-leading order when the dimensions is analytically continued from less than three to greater than three. This provides the leading and next-to-leading order terms in $g$ exactly, which is equivalent to an exact calculation of the so-called Coulomb logarithm with no use of an integral cut-off. In this way, BPS takes all Coulomb interactions into account to leading and next-to-leading order in $g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源