论文标题
LI/S电池电解质的结构和运输特性:多硫化物物种的作用
Structural and Transport Properties of Li/S Battery Electrolytes: Role of the Polysulfide Species
论文作者
论文摘要
锂 - 硫硫(LI/S)电池被认为是锂离子电池以外最有前途的储能设备之一,因为它们的高能量密度为2600 WH/kg,并且负担得起的硫成本。同时,LI/S电池固有的一些挑战仍有待解决的挑战,例如,多硫化物(PS)班车效应,Li $ _2 $ S的不可逆固化以及放电期间阴极材料的体积扩展。在分子水平上,这些问题源于批量和电极限制中PS物种的结构和溶解度行为。在这项研究中,我们使用经典的分子动力学(MD)模拟在1,2-二甲氧基乙烷(DME)和1,3-二氧乙烷(DOL)混合物中开发了不同链长的PS的工作模型。我们研究了电导率,扩散系数,溶剂化结构和聚类行为,并通过文献中可用的实验测量和我们新执行的实验测量来验证我们的仿真模型。我们的结果表明,扩散系数和电导率受PS链长度的显着影响。短链的电导率贡献,例如李$ _2 $ s $ _4 $,低于较长的PS链,例如Li $ _2 $ _2 $ S $ _6 $或Li $ _2 $ _2 $ _2 $ S $ _8 $,尽管事实上,Li $ _2 $ _2 $ _4 $的扩散系数远高于更长的PS链。 Li $ _2 $ S $ _4 $的低电导率可以归因于其离解的低度,甚至归因于解决方案中大簇的形成。还发现,在PS溶液中添加1 M LITFSI可大大降低聚类行为。我们的仿真模型可以在LI/S电解质的合理设计的各种溶剂化和限制系统中进行未来的系统研究。
Lithium--sulfur (Li/S) batteries are regarded as one of the most promising energy storage devices beyond lithium-ion batteries because of their high energy density of 2600 Wh/kg and an affordable cost of sulfur. Meanwhile, some challenges inherent to Li/S batteries remain to be tackled, for instance, the polysulfide (PS) shuttle effect, the irreversible solidification of Li$_2$S, and the volume expansion of the cathode material during discharge. On the molecular level, these issues originate from the structural and solubility behavior of the PS species in bulk and in the electrode confinement. In this study, we use classical molecular dynamics (MD) simulations to develop a working model for PS of different chain lengths in applied electrolyte solutions of lithium bistriflimide (LiTFSI) in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) mixtures. We investigate conductivities, diffusion coefficients, solvation structures, and clustering behavior and verify our simulation model with experimental measurements available in literature and newly performed by us. Our results show that diffusion coefficients and conductivities are significantly influenced by the chain length of PS. The conductivity contribution of the short chains, like Li$_2$S$_4$, is lower than of longer PS chains, such as Li$_2$S$_6$ or Li$_2$S$_8$, despite the fact that the diffusion coefficient of Li$_2$S$_4$ is higher than for longer PS chains. The low conductivity of Li$_2$S$_4$ can be attributed to its low degree of dissociation and even to a formation of large clusters in the solution. It is also found that an addition of 1 M LiTFSI into PS solutions considerably reduces the clustering behavior. Our simulation model enables future systematic studies in various solvating and confining systems for the rational design of Li/S electrolytes.