论文标题
使用Clifford抽样对量子电路误差损失的可扩展评估
Scalable evaluation of quantum-circuit error loss using Clifford sampling
论文作者
论文摘要
开发量子计算技术的主要挑战是通过在物理系统和算法级别上利用多重优化方法来完成高精度任务。评估量子电路总体性能的损失功能可以为许多优化技术提供基础。在本文中,我们使用二次误差损失和最终状态保真度损失来表征量子电路。我们发现,计算误差的分布大约是高斯,这又证明了二次误差损失是合理的。结果表明,这些损失函数可以通过从克利福德主导的电路中采样以可扩展的方式有效地评估。我们通过数值模拟具有各种误差模型的十个Qubit噪声量子电路以及执行超导量子处理器上最多十层两Q Qubit Gates的四个Qubit Circuits来证明结果。我们的结果铺平了迈向基于优化的量子设备和算法设计的道路。
A major challenge in developing quantum computing technologies is to accomplish high precision tasks by utilizing multiplex optimization approaches, on both the physical system and algorithm levels. Loss functions assessing the overall performance of quantum circuits can provide the foundation for many optimization techniques. In this paper, we use the quadratic error loss and the final-state fidelity loss to characterize quantum circuits. We find that the distribution of computation error is approximately Gaussian, which in turn justifies the quadratic error loss. It is shown that these loss functions can be efficiently evaluated in a scalable way by sampling from Clifford-dominated circuits. We demonstrate the results by numerically simulating ten-qubit noisy quantum circuits with various error models as well as executing four-qubit circuits with up to ten layers of two-qubit gates on a superconducting quantum processor. Our results pave the way towards the optimization-based quantum device and algorithm design in the intermediate-scale quantum regime.