论文标题

带有外观感知姿势打鞋的生成人图像

Generating Person Images with Appearance-aware Pose Stylizer

论文作者

Huang, Siyu, Xiong, Haoyi, Cheng, Zhi-Qi, Wang, Qingzhong, Zhou, Xingran, Wen, Bihan, Huan, Jun, Dou, Dejing

论文摘要

由于图像因素之间复杂的纠缠,例如外观,姿势,前景,背景,背景,本地细节,全球结构等,因此产生高质量的人图像是具有挑战性的。在本文中,我们提出了一个新颖的端到端框架,以基于给定的人的姿势和外观生成逼真的人图像。我们框架的核心是一种名为“外观感知姿势造型器”(APS)的新颖发电机,它通过逐步将目标姿势与条件人的外观结合来生成人类图像。通过在编码阶段有效解耦各种复杂的人图像因子,然后在解码阶段重新偶联,该框架具有高度灵活和可控的。此外,我们提出了一种名为Adaptive Patch归一化的新的归一化方法,该方法可以实现特定于区域的标准化,并在个人图像生成模型中采用时显示出良好的性能。两个基准数据集的实验表明,我们的方法能够使用任意图像和姿势输入生成视觉吸引力和现实的结果。

Generation of high-quality person images is challenging, due to the sophisticated entanglements among image factors, e.g., appearance, pose, foreground, background, local details, global structures, etc. In this paper, we present a novel end-to-end framework to generate realistic person images based on given person poses and appearances. The core of our framework is a novel generator called Appearance-aware Pose Stylizer (APS) which generates human images by coupling the target pose with the conditioned person appearance progressively. The framework is highly flexible and controllable by effectively decoupling various complex person image factors in the encoding phase, followed by re-coupling them in the decoding phase. In addition, we present a new normalization method named adaptive patch normalization, which enables region-specific normalization and shows a good performance when adopted in person image generation model. Experiments on two benchmark datasets show that our method is capable of generating visually appealing and realistic-looking results using arbitrary image and pose inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源