论文标题
(否)紧张群体场理论中的相变
(No) phase transition in tensorial group field theory
论文作者
论文摘要
预期在离散方法的量子重力方法中,时空的连续体将通过相变出来。一个有希望的例子是紧张群体字段理论,但其相图仍然是一个空旷的问题。最近尝试在功能重归其化组方法方面的尝试结果尚无定论,因为它们仅限于低阶的截断。我们通过$ \ textrm {u}(1)任意等级的$ tensor字段$ r $的本地潜在近似来克服这一障碍。投影到恒定的字段配置上,我们获得了完整的重新分配组流程方程。在大截止物中,我们发现与$ r-1 $ dimensional $ \ textrm {o}(n)$标量场理论的等效性在很大 - $ n $限制中,通过张量特异性,相对较大的异常维度进行了修改。然而,在较小的长度上,与相应的标量场理论相等,而尺寸消失了,因此没有相变。通过对整个非自治方程的数值分析,我们总是发现对称性恢复。这种效果的基本原因是孤立的零模式。因此,对于任何紧凑型域上的张量场理论以及包括任何张量不变的相互作用,该结果应该是正确的。因此,必须具有非紧密自由度的群体场理论来描述到连续时空的相变。
Continuum spacetime is expected to emerge via phase transition in discrete approaches to quantum gravity. A promising example is tensorial group field theory but its phase diagram remains an open issue. The results of recent attempts in terms of the functional renormalization group method remain inconclusive since they are restricted to truncations of low order. We overcome this barrier with a local-potential approximation for $\textrm{U}(1)$ tensor fields at arbitrary rank $r$ focusing on a specific class of so-called cyclic-melonic interactions. Projecting onto constant field configurations, we obtain the full set of renormalization-group flow equations. At large cut-offs we find equivalence with $r-1$ dimensional $\textrm{O}(N)$ scalar field theory in the large-$N$ limit, modified by a tensor-specific, relatively large anomalous dimension. However, on small length scales there is equivalence with the corresponding scalar field theory with vanishing dimension and, thus, no phase transition. This is confirmed by numerical analysis of the full non-autonomous equations where we always find symmetry restoration. The essential reason for this effect are isolated zero modes. This result should therefore be true for tensor field theories on any compact domain and including any tensor-invariant interactions. Thus, group field theories with non-compact degrees of freedom will be necessary to describe a phase transition to continuum spacetime.