论文标题
BRP-NAS:使用GCN的基于预测的NAS
BRP-NAS: Prediction-based NAS using GCNs
论文作者
论文摘要
神经体系结构搜索(NAS)使研究人员能够自动探索广泛的设计空间,以提高神经网络的效率。在设备部署的情况下,这种效率尤为重要,在此情况下,应与模型的计算需求平衡准确性的提高。实际上,模型的性能指标在计算上的获取昂贵。以前的工作使用代理(例如操作数)或对神经网络层的层次测量来估计端到端硬件性能,但不精确的预测会降低NAS的质量。为了解决这个问题,我们提出了BRP-NAS,这是由基于图形卷积网络(GCN)的准确性能预测器启用的有效硬件感知的NA。更重要的是,我们研究了对不同指标的预测质量,并表明可以通过考虑模型的二进制关系和迭代数据选择策略来提高基于预测变量的NA的样本效率。我们表明,我们所提出的方法优于NAS-Bench-101和NAS Bench-2010上的所有先前方法,并且我们的预测变量可以始终如一地学会从飞镖搜索空间中提取有用的功能,从而在二阶基线上改进。最后,为了提高对准确的延迟估计不是一项琐碎任务的认识,我们发布了Latbench,这是在广泛的设备上运行的NAS Bench-2010型号的延迟数据集。
Neural architecture search (NAS) enables researchers to automatically explore broad design spaces in order to improve efficiency of neural networks. This efficiency is especially important in the case of on-device deployment, where improvements in accuracy should be balanced out with computational demands of a model. In practice, performance metrics of model are computationally expensive to obtain. Previous work uses a proxy (e.g., number of operations) or a layer-wise measurement of neural network layers to estimate end-to-end hardware performance but the imprecise prediction diminishes the quality of NAS. To address this problem, we propose BRP-NAS, an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN). What is more, we investigate prediction quality on different metrics and show that sample efficiency of the predictor-based NAS can be improved by considering binary relations of models and an iterative data selection strategy. We show that our proposed method outperforms all prior methods on NAS-Bench-101 and NAS-Bench-201, and that our predictor can consistently learn to extract useful features from the DARTS search space, improving upon the second-order baseline. Finally, to raise awareness of the fact that accurate latency estimation is not a trivial task, we release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices.