论文标题

KAM理论的某些耗散系统

KAM theory for some dissipative systems

论文作者

Calleja, Renato, Celletti, Alessandra, de la Llave, Rafael

论文摘要

耗散系统在几种物理模型中起着非常重要的作用,最著名的是在天体力学中,耗散驱动了自然和人造卫星的运动,导致它们迁移了轨道,共鸣状态等。因此,需要开发理论以确保存在等结构(例如不变性托里或周期性轨道或定期轨道和设备和设备有效的计算方法)的存在。 在这项工作中,我们集中于不变的托里(Tori)的存在,以耗散系统的特定情况为“共性符合性”系统,它们具有将符号形式转化为自身倍数的特性。为了给出共性合成系统的明确示例,我们将提供两个不同的模型:一个离散系统,标准映射和连续系统,即旋转轨道问题。在这两种情况下,我们都将考虑保守性和耗散版本,这将有助于强调符号和形式符号直立动力学之间的差异。 对于此类耗散系统,我们将以A-tosterii格式呈现KAM定理。证明方法是基于最初在[39]中针对符号案例开发的扩展几何身份。除了导致精简的KAM定理证明外,该方法还提供了一种非常有效的算法,已实现。将有效的数值算法与A-posteriori定理耦合,我们有一种非常有效的方法来提供接近最佳的严格估计值。 实际上,该方法给出了一个标准(Sobolev吹出标准),该标准允许以数值分解来计算。我们将回顾此方法以及J. Greene方法的扩展,并在保守和耗散标准地图中介绍结果。计算接近分解的计算,允许发现新的数学现象,例如“捆绑崩溃机制”。

Dissipative systems play a very important role in several physical models, most notably in Celestial Mechanics, where the dissipation drives the motion of natural and artificial satellites, leading them to migration of orbits, resonant states, etc. Hence the need to develop theories that ensure the existence of structures such as invariant tori or periodic orbits and device efficient computational methods. In this work we concentrate on the existence of invariant tori for the specific case of dissipative systems known as "conformally symplectic" systems, which have the property that they transform the symplectic form into a multiple of itself. To give explicit examples of conformally symplectic systems, we will present two different models: a discrete system, the standard map, and a continuous system, the spin-orbit problem. In both cases we will consider the conservative and dissipative versions, that will help to highlight the differences between the symplectic and conformally symplectic dynamics. For such dissipative systems we will present a KAM theorem in an a-posteriori format. The method of proof is based on extending geometric identities originally developed in [39] for the symplectic case. Besides leading to streamlined proofs of KAM theorem, this method provides a very efficient algorithm which has been implemented. Coupling an efficient numerical algorithm with an a-posteriori theorem, we have a very efficient way to provide rigorous estimates close to optimal. Indeed, the method gives a criterion (the Sobolev blow up criterion) that allows to compute numerically the breakdown. We will review this method as well as an extension of J. Greene's method and present the results in the conservative and dissipative standard maps. Computing close to the breakdown, allows to discover new mathematical phenomena such as the "bundle collapse mechanism".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源