论文标题
在知识图上的对象标签链接置换的二元图嵌入
Dual Graph Embedding for Object-Tag LinkPrediction on the Knowledge Graph
论文作者
论文摘要
由用户,对象和标签组成的知识图(kgs)广泛用于从电子商务,社交媒体网站到新闻门户等等的Web应用程序。本文集中于一个有吸引力的应用程序,该应用程序旨在预测kg中的对象标签链接,以更好地标记建议和对象说明。在预测对象标签链接时,kg中实体之间的一阶和高阶接近传播基本相似性信息以更好地预测。大多数现有的方法侧重于保留kg中实体之间的一阶接近性。但是,他们无法以明确的方式捕获高阶接近性,并且所采用的基于保证金的标准无法准确地衡量全局结构上的一阶接近度。在本文中,我们提出了一种名为Dual Graph嵌入(DGE)的新方法,该方法通过自动编码体系结构在kg中对一阶和高阶接近进行建模,以促进更好的对象标签关系推断。在这里,双图包含一个对象图和一个标签图,该图形明确描述了kg中的高阶对象对象和标签标签近距离。然后,DGE中的双图编码器将这些高阶接近在双图中编码为实体嵌入。解码器制定了一个跳过目标,该目标最大化了在全局接近度结构上观察到的对象标签对之间的一阶接近度。在解码器的监督下,编码器得出的嵌入将进行完善,以捕获kg中的一阶和高阶接近,以更好地链接预测。在三个现实世界数据集上进行的大量实验表明,DGE的表现优于最先进的方法。
Knowledge graphs (KGs) composed of users, objects, and tags are widely used in web applications ranging from E-commerce, social media sites to news portals. This paper concentrates on an attractive application which aims to predict the object-tag links in the KG for better tag recommendation and object explanation. When predicting the object-tag links, both the first-order and high-order proximities between entities in the KG propagate essential similarity information for better prediction. Most existing methods focus on preserving the first-order proximity between entities in the KG. However, they cannot capture the high-order proximities in an explicit way, and the adopted margin-based criterion cannot measure the first-order proximity on the global structure accurately. In this paper, we propose a novel approach named Dual Graph Embedding (DGE) that models both the first-order and high-order proximities in the KG via an auto-encoding architecture to facilitate better object-tag relation inference. Here the dual graphs contain an object graph and a tag graph that explicitly depict the high-order object-object and tag-tag proximities in the KG. The dual graph encoder in DGE then encodes these high-order proximities in the dual graphs into entity embeddings. The decoder formulates a skip-gram objective that maximizes the first-order proximity between observed object-tag pairs over the global proximity structure. With the supervision of the decoder, the embeddings derived by the encoder will be refined to capture both the first-order and high-order proximities in the KG for better link prediction. Extensive experiments on three real-world datasets demonstrate that DGE outperforms the state-of-the-art methods.