论文标题

广义贝塞尔电势的最佳calderón空间

Optimal Calderón Spaces for generalized Bessel potentials

论文作者

Bakhtigareeva, Elza, Goldman, Mikhail L., Haroske, Dorothee D.

论文摘要

在本文中,我们研究了具有广义平滑度的空间的性质,例如包括经典的Nikolskii-Besov空间及其许多概括,并描述包含经典Bessel电位和Sobolev空间的概括性差异性能。电势的内核可能具有非力量奇异性。在电位连续性模量的订单分布估计的帮助下,我们建立了电势嵌入到Calderón空间中的标准,并描述了此类嵌入的最佳空间。

In the paper we investigate the properties of spaces with generalized smoothness, such as Calderón spaces that include the classical Nikolskii-Besov spaces and many of their generalizations, and describe differential properties of generalized Bessel potentials that include classical Bessel potentials and Sobolev spaces. Kernels of potentials may have non-power singularity at the origin. With the help of order-sharp estimates for moduli of continuity of potentials, we establish the criteria of embeddings of potentials into Calderón spaces, and describe the optimal spaces for such embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源