论文标题

在神经科学中的层次引导程序应用于多层次数据

Application of the hierarchical bootstrap to multi-level data in neuroscience

论文作者

Saravanan, Varun, Berman, Gordon J, Sober, Samuel J

论文摘要

许多神经科学数据集中的一个共同特征是存在分层数据结构,最常见的是在多个试验中记录多个动物中多个神经元的活性。因此,即使在这种情况下(例如,学生t检验)对其进行处理,构成数据集的测量并非独立。层次引导程序已被证明是准确分析此类数据的有效工具,尽管它已在统计文献中广泛使用,但尽管层次数据集存在无处不在,但其使用并不广泛。在本文中,我们说明了这种方法分析层次嵌套数据集的直觉和实用性。我们使用模拟的神经数据表明,即使I型错误率设置为5%,传统的统计测试也可能导致45%以上的假正率超过45%。虽然跨非独立点(或较低级别)跨的数据可能可以解决此问题,但这种方法大大降低了分析的统计能力。层次结构引导程序在层次结构的级别上顺序应用时,将I型错误率保持在预期的界限内,并保留比汇总方法更大的统计功率。最后,我们通过证明该方法在两个现实世界中的有效性,首先分析孟加拉雀科(Lonchura Striatavar。houldya)中的唱歌数据,并第二次量化了蝇(Drosophila melanogaster)的光遗传学控制下的行为变化。

A common feature in many neuroscience datasets is the presence of hierarchical data structures, most commonly recording the activity of multiple neurons in multiple animals across multiple trials. Accordingly, the measurements constituting the dataset are not independent, even though the traditional statistical analyses often applied in such cases (e.g., Students t-test) treat them as such. The hierarchical bootstrap has been shown to be an effective tool to accurately analyze such data and while it has been used extensively in the statistical literature, its use is not widespread in neuroscience - despite the ubiquity of hierarchical datasets. In this paper, we illustrate the intuitiveness and utility of this approach to analyze hierarchically nested datasets. We use simulated neural data to show that traditional statistical tests can result in a false positive rate of over 45%, even if the Type-I error rate is set at 5%. While summarizing data across non-independent points (or lower levels) can potentially fix this problem, this approach greatly reduces the statistical power of the analysis. The hierarchical bootstrap, when applied sequentially over the levels of the hierarchical structure, keeps the Type-I error rate within the intended bound and retains more statistical power than summarizing methods. We conclude by demonstrating the effectiveness of the method in two real-world examples, first analyzing singing data in male Bengalese finches (Lonchura striata var. domestica) and second quantifying changes in behavior under optogenetic control in flies (Drosophila melanogaster).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源