论文标题

无限固定

Infinite pinning

论文作者

Dondl, Patrick, Jesenko, Martin, Scheutzow, Michael

论文摘要

在这项工作中,我们解决了在随机介质中无限固定的发生。我们认为,由于某种恒定的驱动力,最初的平坦界面开始通过介质移动。假定培养基包含随机障碍。我们通过泊松点过程对其立场进行建模,并且它们的优势并不有限。我们确定其分布的必要条件,以便无论界面固定如何驱动力。

In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源