论文标题
通过理性封闭的不良RDF
Defeasible RDFS via Rational Closure
论文作者
论文摘要
在非单调逻辑领域,理性封闭(RC)的概念被认为是一种突出的方法。近年来,RC在描述逻辑(DLS)的背景下获得了更加流行,这是语义Web标准本体论语言OWL 2的逻辑,其主要成分是类和角色。在这项工作中,我们展示了如何将RC集成到三重语言RDF中,与OWL2一起是两种主要的标准语义网络本体论语言。为此,我们从$ρdf$开始,这是RDFS背后的逻辑,然后将其扩展到$ρdf_\ bot $,允许说明两个实体不兼容。最终,我们通过典型的RC构造提出了不稳定的$ρdf_\ bot $。我们方法的主要特征是:(i)与大多数其他方法不同,这些方法在单调RDF之上添加了额外的非符号规则层,不可不稳定的$ρdf_\ bot $仍然是语法上的三重语言,并且是$ρdf_\ bot $的简单扩展,通过引入一些新的谓词符号,通过引入一些新的谓词符号。特别是,如果不想考虑新谓词符号的额外语义,则任何RDFS推理器/商店都可以将它们作为普通术语处理; (ii)$ρdf_\ bot $组成的决策程序是建立在$ρdf_\ bot $ Indement决策程序之上的,这反过来又通过一些额外的推断规则延长了$ρdf$的延伸规则,该规则有利于潜在的实施; (iii)可de弱的$ρdf_\ bot $可以在多项式时间内确定。
In the field of non-monotonic logics, the notion of Rational Closure (RC) is acknowledged as a prominent approach. In recent years, RC has gained even more popularity in the context of Description Logics (DLs), the logic underpinning the semantic web standard ontology language OWL 2, whose main ingredients are classes and roles. In this work, we show how to integrate RC within the triple language RDFS, which together with OWL2 are the two major standard semantic web ontology languages. To do so, we start from $ρdf$, which is the logic behind RDFS, and then extend it to $ρdf_\bot$, allowing to state that two entities are incompatible. Eventually, we propose defeasible $ρdf_\bot$ via a typical RC construction. The main features of our approach are: (i) unlike most other approaches that add an extra non-monotone rule layer on top of monotone RDFS, defeasible $ρdf_\bot$ remains syntactically a triple language and is a simple extension of $ρdf_\bot$ by introducing some new predicate symbols with specific semantics. In particular, any RDFS reasoner/store may handle them as ordinary terms if it does not want to take account for the extra semantics of the new predicate symbols; (ii) the defeasible $ρdf_\bot$ entailment decision procedure is build on top of the $ρdf_\bot$ entailment decision procedure, which in turn is an extension of the one for $ρdf$ via some additional inference rules favouring an potential implementation; and (iii) defeasible $ρdf_\bot$ entailment can be decided in polynomial time.