论文标题

通过与有损纳米腔的耦合,光保护尿嘧啶

Photoprotecting uracil by coupling with lossy nanocavities

论文作者

Felicetti, Simone, Fregoni, Jacopo, Schnappinger, Thomas, Reiter, Sebastian, de Vivie-Riedle, Regina, Feist, Johannes

论文摘要

我们分析了如何通过使用纳米腔模式来修改其电磁环境来控制分子的光疗法动力学。特别是,我们考虑了RNA核碱尿素的光疗法,这是防止光损伤的自然机制。在我们的理论工作中,我们确定了与空腔模式强耦合可以打开有效的光保护通道的手术条件,从而使弛豫动力学的速度是自然速度的两倍。我们依靠一种最先进的化学详细分子模型和一种非热的哈密顿传播方法来执行系统耗散动力学的全量器模拟。通过关注光子衰减,我们的分析揭示了在分子偏光元学的背景下,腔诱导的耗散过程在修饰化学反应速率中起的积极作用。值得注意的是,我们发现当满足光结合强度和光子衰减速率之间的最佳权衡时,光线清效率将最大化。该结果与共同的直觉相反,即增加纳米腔和等离子设备的质量因素可以提高其性能。最后,我们使用金属纳米颗粒的详细模型表明,可以通过与纳米球假模型耦合观察到尿嘧啶弛豫的速度,而无需实施复杂的纳米光结构。

We analyze how the photorelaxation dynamics of a molecule can be controlled by modifying its electromagnetic environment using a nanocavity mode. In particular, we consider the photorelaxation of the RNA nucleobase uracil, which is the natural mechanism to prevent photodamage. In our theoretical work, we identify the operative conditions in which strong coupling with the cavity mode can open an efficient photoprotective channel, resulting in a relaxation dynamics twice as fast than the natural one. We rely on a state-of-the-art chemically-detailed molecular model and a non-Hermitian Hamiltonian propagation approach to perform full-quantum simulations of the system dissipative dynamics. By focusing on the photon decay, our analysis unveils the active role played by cavity-induced dissipative processes in modifying chemical reaction rates, in the context of molecular polaritonics. Remarkably, we find that the photorelaxation efficiency is maximized when an optimal trade-off between light-matter coupling strength and photon decay rate is satisfied. This result is in contrast with the common intuition that increasing the quality factor of nanocavities and plasmonic devices improves their performance. Finally, we use a detailed model of a metal nanoparticle to show that the speedup of the uracil relaxation could be observed via coupling with a nanosphere pseudomode, without requiring the implementation of complex nanophotonic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源