论文标题

像素级别的自动图像标记

Automatic Image Labelling at Pixel Level

论文作者

Zhang, Xiang, Zhang, Wei, Peng, Jinye, Fan, Jianping

论文摘要

用于语义图像分割的深网的性能很大程度上取决于在像素级别上标记的大规模训练图像的可用性。通常,这样的像素级图像标记是通过劳动密集型过程手动获得的。为了减轻手动图像标签的负担,我们提出了一种有趣的学习方法,以自动生成像素级图像标记。首先开发了指导过滤网络(GFN),以从源域学习分割知识,然后将这种分割知识传输以生成目标域中的粗对象掩码。这样的粗对象掩模被视为伪标签,并将其进一步整合以优化/完善目标域中的GFN。我们在六个图像集上的实验表明,我们提出的方法可以生成细粒对象掩模(即像素级对象标记),其质量与手动标记的质量相当。与大多数现有的弱监督方法相比,我们提出的方法还可以在语义图像细分方面取得更好的性能。

The performance of deep networks for semantic image segmentation largely depends on the availability of large-scale training images which are labelled at the pixel level. Typically, such pixel-level image labellings are obtained manually by a labour-intensive process. To alleviate the burden of manual image labelling, we propose an interesting learning approach to generate pixel-level image labellings automatically. A Guided Filter Network (GFN) is first developed to learn the segmentation knowledge from a source domain, and such GFN then transfers such segmentation knowledge to generate coarse object masks in the target domain. Such coarse object masks are treated as pseudo labels and they are further integrated to optimize/refine the GFN iteratively in the target domain. Our experiments on six image sets have demonstrated that our proposed approach can generate fine-grained object masks (i.e., pixel-level object labellings), whose quality is very comparable to the manually-labelled ones. Our proposed approach can also achieve better performance on semantic image segmentation than most existing weakly-supervised approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源