论文标题

一种成对的公平和社区保护方法,用于K-中心聚类

A Pairwise Fair and Community-preserving Approach to k-Center Clustering

论文作者

Brubach, Brian, Chakrabarti, Darshan, Dickerson, John P., Khuller, Samir, Srinivasan, Aravind, Tsepenekas, Leonidas

论文摘要

聚类是机器学习中的基本问题,并具有许多应用程序。随着机器学习的普遍性增加,作为自动化系统的后端,人们对公平的担忧产生。当前有关公平性的文献涉及对监督学习中受保护阶级的歧视(群体公平)。我们定义了一个不同的公平聚类概念,其中两个点(或一个要点社区)分开的概率受其成对距离(或社区直径)的越来越多的函数的限制。我们捕获了数据点代表从聚集在一起受益的人的情况。当某些要点被任意分离时,或者是打算伤害他们的人,就像在选举区的情况下一样,就会出现不公平。作为回应,我们在聚类环境,成对公平和社区保存中正式定义了两种新型的公平类型。为了探索我们公平目标的实用性,我们设计了一种方法来扩展现有的$ k $中心算法来满足这些公平性约束。对这种方法的分析证明,在保持公平性的同时可以实现合理的近似值。在实验中,我们比较了我们对经典$ K $中心算法/启发式方法的方法的有效性,并探讨了最佳聚类和公平性之间的权衡。

Clustering is a foundational problem in machine learning with numerous applications. As machine learning increases in ubiquity as a backend for automated systems, concerns about fairness arise. Much of the current literature on fairness deals with discrimination against protected classes in supervised learning (group fairness). We define a different notion of fair clustering wherein the probability that two points (or a community of points) become separated is bounded by an increasing function of their pairwise distance (or community diameter). We capture the situation where data points represent people who gain some benefit from being clustered together. Unfairness arises when certain points are deterministically separated, either arbitrarily or by someone who intends to harm them as in the case of gerrymandering election districts. In response, we formally define two new types of fairness in the clustering setting, pairwise fairness and community preservation. To explore the practicality of our fairness goals, we devise an approach for extending existing $k$-center algorithms to satisfy these fairness constraints. Analysis of this approach proves that reasonable approximations can be achieved while maintaining fairness. In experiments, we compare the effectiveness of our approach to classical $k$-center algorithms/heuristics and explore the tradeoff between optimal clustering and fairness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源