论文标题

放松的责任性分层离散VAE

Relaxed-Responsibility Hierarchical Discrete VAEs

论文作者

Willetts, Matthew, Miscouridou, Xenia, Roberts, Stephen, Holmes, Chris

论文摘要

成功地培训具有离散潜在变量层次结构的变异自动编码器(VAE)仍然是一个积极研究的领域。 载体定量的VAE是离散VAE的强大方法,但是训练时天真的层次扩展可能是不稳定的。利用经典推理方法的见解,我们介绍了\ textit {放松 - 反应性矢量定量},这是一种参数化离散的潜在变量的新颖方法,对放松的矢量量化量化的改进,可以提供更好的性能和更稳定的训练。这使我们能够使用我们端到端训练的许多潜在变量(此处最多32个)来实现层次离散的变异自动编码器。在具有离散的潜在变量端到端的层次概率深层生成模型中,我们为各种标准数据集实现了最新的每个dim结果。 %与具有单层潜在变量的离散VAE不同,我们可以通过祖先采样来产生样品:在学习的潜在表示上训练第二个自回归生成模型并不是必需的,然后从然后解码进行样品。此外,在这些深层层次结构模型中,后一种方法将需要数千个正向通过才能生成单个样本。此外,我们观察到模型的不同层与数据的不同方面相关联。

Successfully training Variational Autoencoders (VAEs) with a hierarchy of discrete latent variables remains an area of active research. Vector-Quantised VAEs are a powerful approach to discrete VAEs, but naive hierarchical extensions can be unstable when training. Leveraging insights from classical methods of inference we introduce \textit{Relaxed-Responsibility Vector-Quantisation}, a novel way to parameterise discrete latent variables, a refinement of relaxed Vector-Quantisation that gives better performance and more stable training. This enables a novel approach to hierarchical discrete variational autoencoders with numerous layers of latent variables (here up to 32) that we train end-to-end. Within hierarchical probabilistic deep generative models with discrete latent variables trained end-to-end, we achieve state-of-the-art bits-per-dim results for various standard datasets. % Unlike discrete VAEs with a single layer of latent variables, we can produce samples by ancestral sampling: it is not essential to train a second autoregressive generative model over the learnt latent representations to then sample from and then decode. % Moreover, that latter approach in these deep hierarchical models would require thousands of forward passes to generate a single sample. Further, we observe different layers of our model become associated with different aspects of the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源