论文标题

由多线性多项式代表整数

Representing integers by multilinear polynomials

论文作者

Boettcher, Albrecht, Fukshansky, Lenny

论文摘要

令$ f(\ boldsymbol x)$为$ n \ ge 1 $度量的均质多项式,$ 1 \ leq d \ leq d \ leq d \ leq n $具有整数系数,因此其每个变量的度量等于$ 1 $。我们在$ f $上提供一些足够的条件,以确保存在一个整数$ b $,存在一个整数矢量$ \ boldsymbol a $,以便$ f(\ boldsymbol a)= b $。提供的条件还保证了vector $ \ boldsymbol a $可以以有限数量的步骤找到。

Let $F(\boldsymbol x)$ be a homogeneous polynomial in $n \ge 1$ variables of degree $1 \leq d \leq n$ with integer coefficients so that its degree in every variable is equal to $1$. We give some sufficient conditions on $F$ to ensure that for every integer $b$ there exists an integer vector $\boldsymbol a$ such that $F(\boldsymbol a) = b$. The conditions provided also guarantee that the vector $\boldsymbol a$ can be found in a finite number of steps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源