论文标题
石墨烯/$α$ -rucl $ _3 $:紧急的2D等离子接口
Graphene/$α$-RuCl$_3$: An Emergent 2D Plasmonic Interface
论文作者
论文摘要
工作功能介导的电荷转移/$α$ -RUCL $ _3 $异质结构已被提议作为生成高度掺杂的2D接口的策略。在这种几何形状中,石墨烯应足够掺杂到宿主表面和边缘等离子体 - 孔子(spps and epps)。 SPP和EPP行为作为频率和温度的函数的表征可以同时探测Interlayer电荷转移的大小,同时提取界面掺杂的$α$ -RUCL $ _3 $的光学响应。我们使用第一原理DFT计算,使用近场光学显微镜(SNOM)来实现这一目标。这揭示了大规模的层中心电荷转移(2.7 $ \ times $ 10 $^{13} $ cm $^{ - 2} $),并在$α$ -rucl $ _3 $中增强了光电率,这是由于大量的电子掺杂而导致的。我们的结果提供了一种一般策略,可以在扫描探针可访问的几何形状中生成高掺杂的等离子界面,而无需静电门。
Work function-mediated charge transfer in graphene/$α$-RuCl$_3$ heterostructures has been proposed as a strategy for generating highly-doped 2D interfaces. In this geometry, graphene should become sufficiently doped to host surface and edge plasmon-polaritons (SPPs and EPPs, respectively). Characterization of the SPP and EPP behavior as a function of frequency and temperature can be used to simultaneously probe the magnitude of interlayer charge transfer while extracting the optical response of the interfacial doped $α$-RuCl$_3$. We accomplish this using scanning near-field optical microscopy (SNOM) in conjunction with first-principles DFT calculations. This reveals massive interlayer charge transfer (2.7 $\times$ 10$^{13}$ cm$^{-2}$) and enhanced optical conductivity in $α$-RuCl$_3$ as a result of significant electron doping. Our results provide a general strategy for generating highly-doped plasmonic interfaces in the 2D limit in a scanning probe-accessible geometry without need of an electrostatic gate.