论文标题
弹性梯度塑料固体的相位场模型正在进行氢含量
A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrittlement
论文作者
论文摘要
我们提出了一个基于梯度的理论框架,用于预测弹性塑料固体中的氢辅助断裂。该模型的新颖性在于:(i)溶质物种的应力辅助扩散,(ii)应变梯度可塑性和(iii)氢敏感相位场断裂公式,灵感来自第一原理计算。理论模型是使用混合有限元公式来数值实现的,并解决了几个边界价值问题,以获得物理见解和展示模型预测。结果揭示了塑性应变梯度在合理的基于破裂的参数中的关键作用,并捕获在富含氢的环境中观察到的脆性断裂的过渡。预测大裂纹尖端应力,进而提高氢浓度并减少断裂能。稳态断裂韧性的计算随着内聚的函数的函数表明,可以使用材料参数的明智值和氢浓度来预测裂解裂缝。此外,我们在各种情况下计算裂纹生长抗性曲线,并证明该模型可以适当地捕获对以下方面的敏感性:塑料长度尺度,断裂长度尺度,加载速率和氢浓度。还将模型预测与现代超高强度钢的断裂实验Aermet100进行了比较。通过在广泛的应用电位上对阈值应力强度因子$ k_ {th} $的实验测量观察到了有希望的一致性。
We present a gradient-based theoretical framework for predicting hydrogen assisted fracture in elastic-plastic solids. The novelty of the model lies in the combination of: (i) stress-assisted diffusion of solute species, (ii) strain gradient plasticity, and (iii) a hydrogen-sensitive phase field fracture formulation, inspired by first principles calculations. The theoretical model is numerically implemented using a mixed finite element formulation and several boundary value problems are addressed to gain physical insight and showcase model predictions. The results reveal the critical role of plastic strain gradients in rationalising decohesion-based arguments and capturing the transition to brittle fracture observed in hydrogen-rich environments. Large crack tip stresses are predicted, which in turn raise the hydrogen concentration and reduce the fracture energy. The computation of the steady state fracture toughness as a function of the cohesive strength shows that cleavage fracture can be predicted in otherwise ductile metals using sensible values for the material parameters and the hydrogen concentration. In addition, we compute crack growth resistance curves in a wide variety of scenarios and demonstrate that the model can appropriately capture the sensitivity to: the plastic length scales, the fracture length scale, the loading rate and the hydrogen concentration. Model predictions are also compared with fracture experiments on a modern ultra-high strength steel, AerMet100. A promising agreement is observed with experimental measurements of threshold stress intensity factor $K_{th}$ over a wide range of applied potentials.