论文标题

预测紧凑型多台网系统的长期稳定性

Predicting the long-term stability of compact multiplanet systems

论文作者

Tamayo, Daniel, Cranmer, Miles, Hadden, Samuel, Rein, Hanno, Battaglia, Peter, Obertas, Alysa, Armitage, Philip J., Ho, Shirley, Spergel, David, Gilbertson, Christian, Hussain, Naireen, Silburt, Ari, Jontof-Hutter, Daniel, Menou, Kristen

论文摘要

我们将对两行型系统中的共振动力学的分析理解与机器学习技术结合在一起,以训练能够在$ 10^9 $ orbits的长时间尺度上稳健地对紧凑型多行星系统中稳定稳定性进行分类的模型。我们对行星轨道配置K分类器(SPOCK)的稳定性可以通过在第一个$ 10^4 $轨道的集成中衡量的物理动机的摘要统计数据来预测稳定性,从而在完整模拟的情况下实现了高达$ 10^5 $的加速速度。该计算在多行星系统上打开了稳定性的表征。我们的模型以$ \ \ \ \ 100,000 $ $的三个行星系统进行了培训,以离散共振进行了采样,两者都将两者推广到跨越连续的周期比率范围的样本,以及与我们的培训数据集具有质量不同配置的大型五个球员样本。我们的方法显着超过了基于系统的角动量赤字,混乱指标和参数化拟合数值整合的先前方法。我们使用SPOCK来限制三个大约接地行星的开普勒-431系统中的内部和外部对之间的自由偏心率,两者都低于0.05。我们的稳定性分析提供了与当前通过径向速度或小行星的过境持续时间测量值相比,偏心率的限制明显更强,并且在显示出传输时机变化(TTV)的一些系统的范围内。鉴于当前的系外行星检测策略现在很少允许强大的TTV限制(Hadden等,2019),Spock为精确表征紧凑的多个星际系统的强大补充方法提供了强大的补充方法。我们公开发布SPOCK,供社区使用。

We combine analytical understanding of resonant dynamics in two-planet systems with machine learning techniques to train a model capable of robustly classifying stability in compact multi-planet systems over long timescales of $10^9$ orbits. Our Stability of Planetary Orbital Configurations Klassifier (SPOCK) predicts stability using physically motivated summary statistics measured in integrations of the first $10^4$ orbits, thus achieving speed-ups of up to $10^5$ over full simulations. This computationally opens up the stability constrained characterization of multi-planet systems. Our model, trained on $\approx 100,000$ three-planet systems sampled at discrete resonances, generalizes both to a sample spanning a continuous period-ratio range, as well as to a large five-planet sample with qualitatively different configurations to our training dataset. Our approach significantly outperforms previous methods based on systems' angular momentum deficit, chaos indicators, and parametrized fits to numerical integrations. We use SPOCK to constrain the free eccentricities between the inner and outer pairs of planets in the Kepler-431 system of three approximately Earth-sized planets to both be below 0.05. Our stability analysis provides significantly stronger eccentricity constraints than currently achievable through either radial velocity or transit duration measurements for small planets, and within a factor of a few of systems that exhibit transit timing variations (TTVs). Given that current exoplanet detection strategies now rarely allow for strong TTV constraints (Hadden et al., 2019), SPOCK enables a powerful complementary method for precisely characterizing compact multi-planet systems. We publicly release SPOCK for community use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源