论文标题
Cellevac:通过行为优化的人群疏散的自适应引导系统
CellEVAC: An adaptive guidance system for crowd evacuation through behavioral optimization
论文作者
论文摘要
人群疏散过程的一个关键方面是个人决策的动态。在这里,我们调查了如何通过使用行为策略优化的最佳出口选择指令来偏爱协调的组动态。我们提出和评估一种自适应引导系统(基于细胞的人群疏散,CELLEVAC),该系统将颜色动态分配给基于细胞的行人定位基础设施中,以提供有效的出口选择指示。 Cellevac的操作模块实现了优化的离散选择模型,该模型整合了使撤离者适应其退出选择的影响因素。为了优化模型,我们使用了模拟优化建模框架,该框架可以基于经典社会力量模型整合了微观的行人模拟。我们通过使用对出口门动力学建模的行人基本图特别关注安全性。 Cellevac已在模拟的外部行人流动模式下进行了模拟的真实场景(马德里竞技场)进行了测试,以模拟复杂的行人相互作用。结果表明,随着相互作用变得复杂,CELLEVAC的表现优于未使用系统的撤离过程,并具有指数改进。我们将系统与基于笛卡尔遗传编程的现有方法进行了比较。我们的系统在安全性,疏散时间和出口选择决策的修订次数方面表现出更好的总体表现。进一步的分析还表明,与Cellevac相比,笛卡尔遗传编程产生的天然行人反应和运动更少。决策逻辑模块建立在行为模型上的事实似乎有利于更自然和有效的响应。我们还发现,即使对于较低的合规率,我们的提议也会对撤离产生积极影响(40%)。
A critical aspect of crowds' evacuation processes is the dynamism of individual decision making. Here, we investigate how to favor a coordinated group dynamic through optimal exit-choice instructions using behavioral strategy optimization. We propose and evaluate an adaptive guidance system (Cell-based Crowd Evacuation, CellEVAC) that dynamically allocates colors to cells in a cell-based pedestrian positioning infrastructure, to provide efficient exit-choice indications. The operational module of CellEVAC implements an optimized discrete-choice model that integrates the influential factors that would make evacuees adapt their exit choice. To optimize the model, we used a simulation-optimization modeling framework that integrates microscopic pedestrian simulation based on the classical Social Force Model. We paid particular attention to safety by using Pedestrian Fundamental Diagrams that model the dynamics of the exit gates. CellEVAC has been tested in a simulated real scenario (Madrid Arena) under different external pedestrian flow patterns that simulate complex pedestrian interactions. Results showed that CellEVAC outperforms evacuation processes in which the system is not used, with an exponential improvement as interactions become complex. We compared our system with an existing approach based on Cartesian Genetic Programming. Our system exhibited a better overall performance in terms of safety, evacuation time, and the number of revisions of exit-choice decisions. Further analyses also revealed that Cartesian Genetic Programming generates less natural pedestrian reactions and movements than CellEVAC. The fact that the decision logic module is built upon a behavioral model seems to favor a more natural and effective response. We also found that our proposal has a positive influence on evacuations even for a low compliance rate (40%).