论文标题

安全智能运输系统的相互依存感知的游戏理论框架

Interdependence-Aware Game-Theoretic Framework for Secure Intelligent Transportation Systems

论文作者

Ferdowsi, Aidin, Eldosouky, Abdelrahman, Saad, Walid

论文摘要

未来智能运输系统(ITS),通信基础设施(CI)和电网(PGS)的运行将是高度相互依存的。特别是,自动连接的车辆需要CI资源才能运行,因此,在交通拥堵和燃油消耗方面,通信失败可能导致其流量不佳。同样,CI组件,例如,基站(BSS)可能会受到为它们供电的电网故障的影响。因此,对PG的恶意攻击可能会导致CI和ITS的失败。为此,在本文中,在相互依存的PG-CI-ITS方案中研究了ITS对通过PG进行的间接攻击的安全性。为了防止这种攻击,相互依存的关键基础设施的管理员可以在每个BS上分配备用电源(BPS),以弥补攻击者造成的电力损失。但是,由于预算限制,管理员必须考虑在分配BPS时鉴于PG失败的风险,因此必须考虑每个BS的重要性。在这方面,提出了一个严格的分析框架,以模拟ITS,CI和PG之间的相互依赖性。接下来,得出PG组件及其街道之间的一对一关系,以捕获PG组件失败对街道交通流量的最佳性的影响。此外,BPS分配的问题是使用Stackelberg游戏框架和游戏的Stackelberg平衡(SE)提出的。仿真结果表明,派生的SE胜过任何其他BPS分配策略,相对于相互依存的基础结构的大小,可以在线性时间内扩展。

The operation of future intelligent transportation systems (ITSs), communications infrastructure (CI), and power grids (PGs) will be highly interdependent. In particular, autonomous connected vehicles require CI resources to operate, and, thus, communication failures can result in non-optimality in the ITS flow in terms of traffic jams and fuel consumption. Similarly, CI components, e.g., base stations (BSs) can be impacted by failures in the electric grid that is powering them. Thus, malicious attacks on the PG can lead to failures in both the CI and the ITSs. To this end, in this paper, the security of an ITS against indirect attacks carried out through the PG is studied in an interdependent PG-CI-ITS scenario. To defend against such attacks, the administrator of the interdependent critical infrastructure can allocate backup power sources (BPSs) at every BS to compensate for the power loss caused by the attacker. However, due to budget limitations, the administrator must consider the importance of each BS in light of the PG risk of failure, while allocating the BPSs. In this regard, a rigorous analytical framework is proposed to model the interdependencies between the ITS, CI, and PG. Next, a one-to-one relationship between the PG components and ITS streets is derived in order to capture the effect of the PG components' failure on the optimality of the traffic flow in the streets. Moreover, the problem of BPS allocation is formulated using a Stackelberg game framework and the Stackelberg equilibrium (SE) of the game is characterized. Simulation results show that the derived SE outperforms any other BPS allocation strategy and can be scalable in linear time with respect to the size of the interdependent infrastructure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源