论文标题

通过对抗对抗性的最佳运输来代表性学习

Representation Learning via Adversarially-Contrastive Optimal Transport

论文作者

Cherian, Anoop, Aeron, Shuchin

论文摘要

在本文中,我们研究了捕获其隐式时空提示的顺序数据学习紧凑(低维)表示的问题。为了最大程度地提取此类信息线索从数据中提取,我们将问题设置在对比表示学习的背景下,并通过最佳运输提出一个新的目标。具体而言,我们的配方寻求数据的低维子空间表示(i)共同(i)最大化数据(嵌入此子空间中)与最佳传输下的对抗数据分布的距离(嵌入在此子空间中),也就是Wasserstein距离,(ii)捕获了时间序,(iii)捕获了(iii),并将(iii)最小化。为了产生对抗性分布,我们提出了一个新的框架,将Wasserstein Gans与分类器联系起来,允许有一种原则性的机制来为对比度学习产生良好的负面分布,这是当前具有挑战性的问题。我们的完整目标是将其作为格拉曼(Grassmann)歧管上的子空间学习问题,并通过黎曼优化解决。为了从经验研究我们的配方,我们提供了有关视频序列中人类行动识别任务的实验。我们的结果表明了针对具有挑战性的基线的竞争性能。

In this paper, we study the problem of learning compact (low-dimensional) representations for sequential data that captures its implicit spatio-temporal cues. To maximize extraction of such informative cues from the data, we set the problem within the context of contrastive representation learning and to that end propose a novel objective via optimal transport. Specifically, our formulation seeks a low-dimensional subspace representation of the data that jointly (i) maximizes the distance of the data (embedded in this subspace) from an adversarial data distribution under the optimal transport, a.k.a. the Wasserstein distance, (ii) captures the temporal order, and (iii) minimizes the data distortion. To generate the adversarial distribution, we propose a novel framework connecting Wasserstein GANs with a classifier, allowing a principled mechanism for producing good negative distributions for contrastive learning, which is currently a challenging problem. Our full objective is cast as a subspace learning problem on the Grassmann manifold and solved via Riemannian optimization. To empirically study our formulation, we provide experiments on the task of human action recognition in video sequences. Our results demonstrate competitive performance against challenging baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源