论文标题
PCAM:使用点监督的弱监督语义细分
PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision
论文作者
论文摘要
生成语义分割的最新方法的当前状态在很大程度上取决于一组带有一类兴趣标签或背景的像素标记的图像。提出这样的标签,尤其是在需要专家进行注释的领域中,时间和金钱成本很高。几种方法表明,我们可以从较便宜的图像级标签中学习语义分割,但是点级标签的有效性,这是所有标记和没有的像素之间的健康折衷,仍然在很大程度上尚未探索。本文提出了一个新的程序,用于从图像中产生语义分割,给定某些点级注释。该方法包括探索卷积神经网络(CNN)的训练中的点注释,用于产生改善的定位和类激活图。然后,我们使用另一个CNN预测语义亲和力,以传播粗糙的类标签并创建伪语义分割标签。最后,我们建议培训CNN,通常使用我们的伪标签代替地面真相标签对CNN进行全面监督,该标签进一步改善了性能并通过在推理中仅需要一个CNN而不是两个,从而简化了推理过程。我们的方法在Pascal VOC 2012数据集\ cite {Everingham2010pascal}上实现了对点监督语义细分的最新结果,即使超过更强的边界框和尖刻的监督,甚至超过了最先进的方法。
Current state of the art methods for generating semantic segmentation rely heavily on a large set of images that have each pixel labeled with a class of interest label or background. Coming up with such labels, especially in domains that require an expert to do annotations, comes at a heavy cost in time and money. Several methods have shown that we can learn semantic segmentation from less expensive image-level labels, but the effectiveness of point level labels, a healthy compromise between all pixels labelled and none, still remains largely unexplored. This paper presents a novel procedure for producing semantic segmentation from images given some point level annotations. This method includes point annotations in the training of a convolutional neural network (CNN) for producing improved localization and class activation maps. Then, we use another CNN for predicting semantic affinities in order to propagate rough class labels and create pseudo semantic segmentation labels. Finally, we propose training a CNN that is normally fully supervised using our pseudo labels in place of ground truth labels, which further improves performance and simplifies the inference process by requiring just one CNN during inference rather than two. Our method achieves state of the art results for point supervised semantic segmentation on the PASCAL VOC 2012 dataset \cite{everingham2010pascal}, even outperforming state of the art methods for stronger bounding box and squiggle supervision.