论文标题
使用贝叶斯更新定理,用于培训三重态网络的批处理三胞胎抽样
Batch-Incremental Triplet Sampling for Training Triplet Networks Using Bayesian Updating Theorem
论文作者
论文摘要
三胞胎网络的变体是学习歧视性嵌入子空间的强大实体。有不同的三胞胎挖掘方法,可选择最合适的训练三胞胎。这些采矿方法中的一些依赖于实例之间的极端距离,而另一些采矿方法利用采样。但是,从数据的随机分布中进行采样,而不是仅从现有嵌入实例中取样可以提供更多的歧视性信息。在这项工作中,我们从数据分布而不是现有实例中采样三重态。我们考虑每个类嵌入的多元正态分布。使用贝叶斯更新和共轭先验,我们通过接收新的小型培训数据来动态更新类的分布。提出的带有贝叶斯更新的三重态开采可与任何基于三重态的损耗功能,例如三胞胎损失或邻里组件分析(NCA)损失一起使用。因此,根据使用哪种损失功能,我们的三胞胎挖掘方法称为贝叶斯更新三胞胎(But)和贝叶斯更新NCA(BUNCA)。在两个公共数据集的实验结果,即MNIST和组织病理学癌症(CRC),证实了所提出的三重态挖掘方法的有效性。
Variants of Triplet networks are robust entities for learning a discriminative embedding subspace. There exist different triplet mining approaches for selecting the most suitable training triplets. Some of these mining methods rely on the extreme distances between instances, and some others make use of sampling. However, sampling from stochastic distributions of data rather than sampling merely from the existing embedding instances can provide more discriminative information. In this work, we sample triplets from distributions of data rather than from existing instances. We consider a multivariate normal distribution for the embedding of each class. Using Bayesian updating and conjugate priors, we update the distributions of classes dynamically by receiving the new mini-batches of training data. The proposed triplet mining with Bayesian updating can be used with any triplet-based loss function, e.g., triplet-loss or Neighborhood Component Analysis (NCA) loss. Accordingly, Our triplet mining approaches are called Bayesian Updating Triplet (BUT) and Bayesian Updating NCA (BUNCA), depending on which loss function is being used. Experimental results on two public datasets, namely MNIST and histopathology colorectal cancer (CRC), substantiate the effectiveness of the proposed triplet mining method.