论文标题

从海洋海景中预测巴塔哥尼亚货架上的非法捕鱼

Predicting Illegal Fishing on the Patagonia Shelf from Oceanographic Seascapes

论文作者

Woodill, A. John, Kavanaugh, Maria, Harte, Michael, Watson, James R.

论文摘要

世界上许多最重要的渔业正在经历非法捕鱼的增加,破坏了可持续保存和管理鱼类股票的努力。结束非法,未报告和不受监管(IUU)捕鱼的主要挑战是提高我们确定船只是否非法捕鱼以及在海洋中可能发生非法捕鱼的能力。但是,监视海洋是昂贵的,耗时的,对于海事当局巡逻的逻辑挑战。为了解决这个问题,我们使用船只跟踪数据和机器学习来预测巴塔哥尼亚货架上的非法捕鱼,这是世界上最有生产力的渔业地区之一。具体来说,我们专注于中国渔船,这些渔船在该地区一直非法钓鱼。我们将船只位置数据与海洋学的海景(基于海洋变量的海洋地区类别)以及其他遥感海洋学变量相结合,以训练一系列具有不同复杂程度的机器学习模型。这些模型能够预测中国血管是否以69-96%的信心进行非法运行,具体取决于年份和所使用的预测变量。这些结果为迈向非法活动提供了有希望的一步,而不是对它们做出法医反应。

Many of the world's most important fisheries are experiencing increases in illegal fishing, undermining efforts to sustainably conserve and manage fish stocks. A major challenge to ending illegal, unreported, and unregulated (IUU) fishing is improving our ability to identify whether a vessel is fishing illegally and where illegal fishing is likely to occur in the ocean. However, monitoring the oceans is costly, time-consuming, and logistically challenging for maritime authorities to patrol. To address this problem, we use vessel tracking data and machine learning to predict illegal fishing on the Patagonian Shelf, one of the world's most productive regions for fisheries. Specifically, we focus on Chinese fishing vessels, which have consistently fished illegally in this region. We combine vessel location data with oceanographic seascapes -- classes of oceanic areas based on oceanographic variables -- as well as other remotely sensed oceanographic variables to train a series of machine learning models of varying levels of complexity. These models are able to predict whether a Chinese vessel is operating illegally with 69-96% confidence, depending on the year and predictor variables used. These results offer a promising step towards preempting illegal activities, rather than reacting to them forensically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源