论文标题

双曲线流问题的算法分化

Algorithmic differentiation of hyperbolic flow problems

论文作者

Herty, Michael, Hüser, Jonathan, Naumann, Uwe, Schilden, Thomas, Schröder, Wolfgang

论文摘要

我们对开发算法分化框架的开发感兴趣,以计算针对标量和双曲偏微分方程系统的切线向量的近似值。这种数值方法的主要难度是通过提出在Bressan和Marson中提出的积分的数值离散化来解决的冲击波[Rend。 SEM。垫。大学。 Padova,94:79-94,1995]。给出了一维汉堡方程和欧拉方程的数值结果。使用用于计算流体动力学(CFD)的最新代码的基本例程作为起点,需要进行三个修改以应用引入的演算。首先,对CFD代码进行了修改,以求解震动位置的其他方程。其次,我们自定义对相应的切换位置切线的计算。最后,通过算法分化增强了修改方法。将引入的演算应用于汉堡方程和欧拉方程的问题,发现可以计算正确的灵敏度,而黑盒算法分化的应用失败。

We are interested in the development of an algorithmic differentiation framework for computing approximations to tangent vectors to scalar and systems of hyperbolic partial differential equations. The main difficulty of such a numerical method is the presence of shock waves that are resolved by proposing a numerical discretization of the calculus introduced in Bressan and Marson [Rend. Sem. Mat. Univ. Padova, 94:79-94, 1995]. Numerical results are presented for the one-dimensional Burgers equation and the Euler equations. Using the essential routines of a state-of-the-art code for computational fluid dynamics (CFD) as a starting point, three modifications are required to apply the introduced calculus. First, the CFD code is modified to solve an additional equation for the shock location. Second, we customize the computation of the corresponding tangent to the shock location. Finally, the modified method is enhanced by algorithmic differentiation. Applying the introduced calculus to problems of the Burgers equation and the Euler equations, it is found that correct sensitivities can be computed, whereas the application of black-box algorithmic differentiation fails.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源