论文标题
放松的宇宙中微子质量界限与不稳定的中微子
Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos
论文作者
论文摘要
目前,宇宙学观察将最严格的束缚在中微子质量尺度上。在标准宇宙学模型($λ$ CDM)中,Planck Collaboration报告$ \ summ_ν<0.12 \,\ text {ev} $在95%Cl。以表面价值为单位,这种结合不包括许多中微子质量模型。但是,不稳定的中微子寿命短于宇宙的年龄$τ_ν\ Lessim t_u $,代表了一个粒子物理大道,可以放松这种约束。在这一事实中,我们提出了中微子衰变模式的分类法,从粒子含量和最终衰减产品中对它们进行分类。考虑到相关的现象学界限,我们的分析表明,在BSM颗粒中2体衰减中微子是放松宇宙中微子质量界限的有前途的选择。然后,我们通过添加一个无菌状态$ν_4$和一个Goldstone Boson $ ϕ $来构建我看到的类型场景的简单扩展,其中$ν_i\ toν_4\,ϕ $衰减可以使中源质量限制为$ \ summ_ν\ sim 1 \ sim 1 \ sim \ sim \ sim asserriry,而没有doiles firave nibfer night night night night fir.值得注意的是,从电动量到肠道量表的大量右手中微子质量是可能的。我们在基于$ u(1)_ {μ-τ} $风味对称性的最小中微子质量模型的背景下成功实现了这个想法,否则它们会与$ \ sum sum summ_ν$上的电流绑定在一起。
At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model ($Λ$CDM), the Planck collaboration reports $\sum m_ν< 0.12\,\text{eV}$ at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $τ_ν\lesssim t_U$, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state $ν_4$ and a Goldstone boson $ϕ$, in which $ν_i \to ν_4 \, ϕ$ decays can loosen the neutrino mass bounds up to $\sum m_ν\sim 1\,\text{eV}$, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a $U(1)_{μ-τ}$ flavor symmetry, which are otherwise in tension with the current bound on $\sum m_ν$.