论文标题

使用遗传算法确定复杂相互作用网络的有效控制

Identifying efficient controls of complex interaction networks using genetic algorithms

论文作者

Popescu, Victor-Bogdan, Kanhaiya, Krishna, Năstac, Iulian, Czeizler, Eugen, Petre, Ion

论文摘要

控制理论最近在网络科学中有影响力的应用,尤其是在与网络医学应用程序的连接中。研究的一个关键主题是找到最少的外部干预措施,这些干预措施可控制给定网络的动态,这是一个称为网络可控性的问题。我们在本文中提出了基于遗传算法的新解决方案。我们为计算药物重新利用的应用定制解决方案,以最大程度地利用其在给定疾病特异性蛋白质蛋白质相互作用网络中使用FDA批准的药物靶标。我们展示了我们的算法如何识别许多潜在的乳腺癌,卵巢癌和胰腺癌药物。我们在癌症医学,社交网络,电子电路和几个随机网络的几个基准网络上演示了我们的算法,其边缘根据Erdős-rényi,小世界和无标度属性分布。总体而言,我们表明,我们的新算法在识别疾病网络中相关的药物靶标方面更有效地推进了新的治疗和药物重新利用方法所需的计算解决方案。

Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximise its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We show how our algorithm identifies a number of potentially efficient drugs for breast, ovarian, and pancreatic cancer. We demonstrate our algorithm on several benchmark networks from cancer medicine, social networks, electronic circuits, and several random networks with their edges distributed according to the Erdős-Rényi, the small-world, and the scale-free properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源