论文标题
区域分数拉普拉斯人:边界规律性
Regional fractional Laplacians: Boundary regularity
论文作者
论文摘要
我们研究涉及所谓的区域分数拉帕西亚$(-Δ)^s_Ω$的方程的解决方案的边界规律性,其中$ω\ subset \ mathbb {r}^n $。回想一下,区域分数laplacians是由不允许跳出$ω$的对称稳定过程产生的。我们考虑方程$(δ)^s_Ωw(x)= p.v。\int_Ω\ frac {w(x)-w(y)} {| x-y |^{n+2s}} \,dy = f(x)$,in(0,1)$,对零neumann或diricle diricled.s in diricheled。边界条件是通过考虑$ w $以及分数Sobolev spaces $ h^s(ω)$或$ h^s_0(ω)$中的测试功能来定义的。 尽管内部规律性在这些问题上是充分理解的,但在边界规律性中鲜为人知,主要是针对Neumann问题。在$ω$上的最佳规律性假设下,并在l^p(ω)$中提供$ f \,我们表明在零neumann边界条件的情况下,在c^{2s-n/p}(\ edlineω)$中$ w \。结果,$ 2S-N/p> 1 $,$ w \ in C^{1,2S- \ frac {n} {p} -1}(\overlineΩ)$。作为涉及Dirichlet问题的原因,我们获得了$ {w}/{δ^{2S-1}} \ in C^{1-n/p}(\overlineΩ)$,提供$ p> n $和$ p> n $和$ s \ in(1/2,1)$,$δ(x)= x(x)= x = \ textrm {distrm {distrm {distrm {x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,\ f inalcaiLpAllome。 为了证明这些结果,我们首先将所有解决方案分类为无穷大的所有解决方案,当时$ω$是半空间,右侧侧为零。然后,我们进行了一次精美的爆炸和一些紧凑的论点,以获取结果。
We study boundary regularity for solutions to a class of equations involving the so called regional fractional Lapacians $(-Δ)^s_Ω$, with $Ω\subset \mathbb{R}^N$. Recall that the regional fractional Laplacians are generated by symmetric stable processes which are not allowed to jump outside $Ω$. We consider weak solutions to the equation $(-Δ)^s_Ωw(x)=p.v.\int_Ω\frac{w(x)-w(y)}{|x-y|^{N+2s}}\, dy=f(x)$, for $s\in (0,1)$, subject to zero Neumann or Dirichlet boundary conditions. The boundary conditions are defined by considering $w$ as well as the test functions in the fractional Sobolev spaces $H^s(Ω)$ or $H^s_0(Ω)$ respectively. While the interior regularity is well understood for these problems, little is known in the boundary regularity, mainly for the Neumann problem. Under optimal regularity assumptions on $Ω$ and provided $f\in L^p(Ω)$, we show that $w\in C^{2s-N/p}(\overline Ω)$ in the case of zero Neumann boundary conditions. As a consequence for $2s-N/p>1$, $w\in C^{1,2s-\frac{N}{p}-1}(\overlineΩ)$. As what concerned the Dirichlet problem, we obtain ${w}/{δ^{2s-1}}\in C^{1-N/p}(\overlineΩ)$, provided $p>N$ and $s\in (1/2,1)$, where $δ(x)=\textrm{dist}(x,\partialΩ)$. To prove these results, we first classify all solutions having a certain growth at infinity when $Ω$ is a half-space and the right hand side is zero. We then carry over a fine blow up and some compactness arguments to get the results.