论文标题

低剂量CT通过联合双边滤波和智能参数优化降级

Low Dose CT Denoising via Joint Bilateral Filtering and Intelligent Parameter Optimization

论文作者

Patwari, Mayank, Gutjahr, Ralf, Raupach, Rainer, Maier, Andreas

论文摘要

临床CT图像的降级是深度学习研究的活跃领域。当前经过临床批准的方法使用迭代重建方法来减少CT图像中的噪声。迭代重建技术需要多个前向和向后的预测,这些预测既耗时又昂贵。最近,深度学习方法已成功地用于降低CT图像。但是,传统的深度学习方法遇到了“黑匣子”问题。它们的问责制较低,这是在临床成像情况下使用所必需的。在本文中,我们使用联合双边滤波器(JBF)来代替我们的CT图像。使用深残余卷积神经网络(CNN)估算JBF的指导图像。 JBF的范围平滑和空间平滑参数是通过深度加强学习任务调节的。我们的演员首先选择一个参数,然后选择一个操作来调整参数的值。奖励网络旨在指导强化学习任务。我们的脱氧方法表明了良好的降解性能,同时保留结构信息。我们的方法极大地胜过艺术深度神经网络的状态。此外,我们的方法只有两个参数,这使其明显更容易解释并减少了“黑匣子”问题。我们通过实验测量智能参数优化和奖励网络的影响。我们的研究表明,我们当前的设置在结构保存方面取得了最佳结果。

Denoising of clinical CT images is an active area for deep learning research. Current clinically approved methods use iterative reconstruction methods to reduce the noise in CT images. Iterative reconstruction techniques require multiple forward and backward projections, which are time-consuming and computationally expensive. Recently, deep learning methods have been successfully used to denoise CT images. However, conventional deep learning methods suffer from the 'black box' problem. They have low accountability, which is necessary for use in clinical imaging situations. In this paper, we use a Joint Bilateral Filter (JBF) to denoise our CT images. The guidance image of the JBF is estimated using a deep residual convolutional neural network (CNN). The range smoothing and spatial smoothing parameters of the JBF are tuned by a deep reinforcement learning task. Our actor first chooses a parameter, and subsequently chooses an action to tune the value of the parameter. A reward network is designed to direct the reinforcement learning task. Our denoising method demonstrates good denoising performance, while retaining structural information. Our method significantly outperforms state of the art deep neural networks. Moreover, our method has only two parameters, which makes it significantly more interpretable and reduces the 'black box' problem. We experimentally measure the impact of our intelligent parameter optimization and our reward network. Our studies show that our current setup yields the best results in terms of structural preservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源