论文标题

关于密度矩阵扰动理论的注释

Notes on density matrix perturbation theory

论文作者

Truflandier, Lionel A., Dianzinga, Rivo M., Bowler, David R.

论文摘要

密度基质扰动理论(DMPT)被称为Rayleigh-Schrödinger扰动理论的有前途的替代方法,在该理论中,总和 - 跨状态(SOS)被以扰动密度矩阵作为输入变量的算法取代。在本文中,我们制定并讨论了三种类型的DMPT,其中两种仅基于密度矩阵:Kussmann和Ochsenfeld的方法[J.化学Phys.127,054103(2007)]通过Sylvester方程进行了重新制定,A.M.N.的递归DMPT。 Niklasson和M. Challacombe [物理学。莱特牧师。 92,193001(2004)]扩展到[J.化学物理。 144,091102(2016)]。计算性能的比较表明,上述方法的表现优于标准SOS。 HPCP-DMPT显示出稳定的收敛曲线,但与原始递归多项式方法相比,计算成本更高

Density matrix perturbation theory (DMPT) is known as a promising alternative to the Rayleigh-Schrödinger perturbation theory, in which the sum-over-state (SOS) is replaced by algorithms with perturbed density matrices as the input variables. In this article, we formulate and discuss three types of DMPT, with two of them based only on density matrices: the approach of Kussmann and Ochsenfeld [J. Chem. Phys.127, 054103 (2007)] is reformulated via the Sylvester equation, and the recursive DMPT of A.M.N. Niklasson and M. Challacombe [Phys. Rev. Lett. 92, 193001 (2004)] is extended to the hole-particle canonical purification (HPCP) from [J. Chem. Phys. 144, 091102 (2016)]. Comparison of the computational performances shows that the aformentioned methods outperform the standard SOS. The HPCP-DMPT demonstrates stable convergence profiles but at a higher computational cost when compared to the original recursive polynomial method

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源